37,501 research outputs found

    Bayesian uncertainty quantification in linear models for diffusion MRI

    Full text link
    Diffusion MRI (dMRI) is a valuable tool in the assessment of tissue microstructure. By fitting a model to the dMRI signal it is possible to derive various quantitative features. Several of the most popular dMRI signal models are expansions in an appropriately chosen basis, where the coefficients are determined using some variation of least-squares. However, such approaches lack any notion of uncertainty, which could be valuable in e.g. group analyses. In this work, we use a probabilistic interpretation of linear least-squares methods to recast popular dMRI models as Bayesian ones. This makes it possible to quantify the uncertainty of any derived quantity. In particular, for quantities that are affine functions of the coefficients, the posterior distribution can be expressed in closed-form. We simulated measurements from single- and double-tensor models where the correct values of several quantities are known, to validate that the theoretically derived quantiles agree with those observed empirically. We included results from residual bootstrap for comparison and found good agreement. The validation employed several different models: Diffusion Tensor Imaging (DTI), Mean Apparent Propagator MRI (MAP-MRI) and Constrained Spherical Deconvolution (CSD). We also used in vivo data to visualize maps of quantitative features and corresponding uncertainties, and to show how our approach can be used in a group analysis to downweight subjects with high uncertainty. In summary, we convert successful linear models for dMRI signal estimation to probabilistic models, capable of accurate uncertainty quantification.Comment: Added results from a group analysis and a comparison with residual bootstra

    The vector floor and ceiling model

    Get PDF
    This paper motivates and develops a nonlinear extension of the Vector Autoregressive model which we call the Vector Floor and Ceiling model. Bayesian and classical methods for estimation and testing are developed and compared in the context of an application involving U.S. macroeconomic data. In terms of statistical significance both classical and Bayesian methods indicate that the (Gaussian) linear model is inadequate. Using impulse response functions we investigate the economic significance of the statistical analysis. We find evidence of strong nonlinearities in the contemporaneous relationships between the variables and milder evidence of nonlinearity in the conditional mean

    Dynamic Bayesian Nonlinear Calibration

    Full text link
    Statistical calibration where the curve is nonlinear is important in many areas, such as analytical chemistry and radiometry. Especially in radiometry, instrument characteristics change over time, thus calibration is a process that must be conducted as long as the instrument is in use. We propose a dynamic Bayesian method to perform calibration in the presence of a curvilinear relationship between the reference measurements and the response variable. The dynamic calibration approach adequately derives time dependent calibration distributions in the presence of drifting regression parameters. The method is applied to microwave radiometer data and simulated spectroscopy data based on work by Lundberg and de Mar\'{e} (1980)

    An approach for jointly modeling multivariate longitudinal measurements and discrete time-to-event data

    Full text link
    In many medical studies, patients are followed longitudinally and interest is on assessing the relationship between longitudinal measurements and time to an event. Recently, various authors have proposed joint modeling approaches for longitudinal and time-to-event data for a single longitudinal variable. These joint modeling approaches become intractable with even a few longitudinal variables. In this paper we propose a regression calibration approach for jointly modeling multiple longitudinal measurements and discrete time-to-event data. Ideally, a two-stage modeling approach could be applied in which the multiple longitudinal measurements are modeled in the first stage and the longitudinal model is related to the time-to-event data in the second stage. Biased parameter estimation due to informative dropout makes this direct two-stage modeling approach problematic. We propose a regression calibration approach which appropriately accounts for informative dropout. We approximate the conditional distribution of the multiple longitudinal measurements given the event time by modeling all pairwise combinations of the longitudinal measurements using a bivariate linear mixed model which conditions on the event time. Complete data are then simulated based on estimates from these pairwise conditional models, and regression calibration is used to estimate the relationship between longitudinal data and time-to-event data using the complete data. We show that this approach performs well in estimating the relationship between multivariate longitudinal measurements and the time-to-event data and in estimating the parameters of the multiple longitudinal process subject to informative dropout. We illustrate this methodology with simulations and with an analysis of primary biliary cirrhosis (PBC) data.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS339 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore