26 research outputs found

    On multiple access random medium access control

    Get PDF
    In this paper, we develop a new class of medium access control protocol, which allows each user to transmit at different data rates chosen randomly from an appropriately determined set of rates. By using successive interference cancellation, multiple packets can be received simultaneously. In slotted Aloha type Gaussian networks, we show that the achievable total throughput of the proposed protocol is at least a constant fraction of the mac sum rate when the number of transmission rates at each node is equal to the number of users in the network. We also study the case when only a limited number of transmission rates is available at each node. Extension to rate splitting is discussed. Simulation results show that the proposed protocol can achieve a significant throughput gain over the conventional Aloha

    Time diversity solutions to cope with lost packets

    Get PDF
    A dissertation submitted to Departamento de Engenharia Electrotécnica of Faculdade de Ciências e Tecnologia of Universidade Nova de Lisboa in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engenharia Electrotécnica e de ComputadoresModern broadband wireless systems require high throughputs and can also have very high Quality-of-Service (QoS) requirements, namely small error rates and short delays. A high spectral efficiency is needed to meet these requirements. Lost packets, either due to errors or collisions, are usually discarded and need to be retransmitted, leading to performance degradation. An alternative to simple retransmission that can improve both power and spectral efficiency is to combine the signals associated to different transmission attempts. This thesis analyses two time diversity approaches to cope with lost packets that are relatively similar at physical layer but handle different packet loss causes. The first is a lowcomplexity Diversity-Combining (DC) Automatic Repeat reQuest (ARQ) scheme employed in a Time Division Multiple Access (TDMA) architecture, adapted for channels dedicated to a single user. The second is a Network-assisted Diversity Multiple Access (NDMA) scheme, which is a multi-packet detection approach able to separate multiple mobile terminals transmitting simultaneously in one slot using temporal diversity. This thesis combines these techniques with Single Carrier with Frequency Division Equalizer (SC-FDE) systems, which are widely recognized as the best candidates for the uplink of future broadband wireless systems. It proposes a new NDMA scheme capable of handling more Mobile Terminals (MTs) than the user separation capacity of the receiver. This thesis also proposes a set of analytical tools that can be used to analyse and optimize the use of these two systems. These tools are then employed to compare both approaches in terms of error rate, throughput and delay performances, and taking the implementation complexity into consideration. Finally, it is shown that both approaches represent viable solutions for future broadband wireless communications complementing each other.Fundação para a Ciência e Tecnologia - PhD grant(SFRH/BD/41515/2007); CTS multi-annual funding project PEst-OE/EEI/UI0066/2011, IT pluri-annual funding project PEst-OE/EEI/LA0008/2011, U-BOAT project PTDC/EEATEL/ 67066/2006, MPSat project PTDC/EEA-TEL/099074/2008 and OPPORTUNISTICCR project PTDC/EEA-TEL/115981/200

    Enabling Millimeter Wave Communication for 5G Cellular Networks: MAC-layer Perspective

    Get PDF
    Data traffic among mobile devices increases dramatically with emerging high-speed multimedia applications such as uncompressed video streaming. Many new applications beyond personal communications involve tens or even hundreds of billions wireless devices, such as wireless watch, e-health sensors, and wireless glass. The number of wireless devices and the data rates will continue to grow exponentially. Quantitative evidences forecast that total data rate by 2020 will be 1000 times of current 4G data rate. Next generation wireless networks need fundamental changes to satisfy the overwhelming capacity demands. Millimeter wave (mmWave) communication with huge available bandwidth is a very promising solution for next generation wireless networks to overcome the global bandwidth shortage at saturated microwave spectrum. The large available bandwidth can be directly translated into high capacity. mmWave communication has several propagation characteristics including strong pathloss, atmospheric and rain absorption, low diffraction around obstacles and penetration through objects. These propagation characteristics create challenges for next generation wireless networks to support various kinds of emerging applications with different QoS requirements. Our research focuses on how to effectively and efficiently exploit the large available mmWave bandwidth to achieve high capacity demand while overcoming these challenges on QoS provisioning for various kinds of applications. This thesis focuses on MAC protocol design and analysis for mmWave communication to provide required capacity and QoS to support various kinds of applications in next generation wireless networks. Specifically, from the transmitter/receiver perspective, multi-user beamforming based on codebook is conducted to determine best transmission/reception beams to increase network capacity considering the mutual interferences among concurrent links. From the channel perspective, both interfering and non-interfering concurrent links are scheduled to operate simultaneously to exploit spatial reuse and improve network capacity. Link outage problem resulting from the limited diffraction capability and low penetration capability of mmWave band is addressed for quality provisioning by enabling multi-hop transmission to replace the link in outage (for low-mobility scenarios) and buffer design with dynamic bandwidth allocation among all the users in the whole coverage area (for high-mobility scenarios). From the system perspective, system structure, network architecture, and candidate MAC are investigated and novel backoff mechanism for CSMA/CA is proposed to give more transmission opportunity to faraway nodes than nearby nodes in order to achieve better fairness and higher network capacity. In this thesis, we formulate each problem mentioned above as an optimization problem with the proposed algorithms to solve it. Extensive analytical and simulation results are provided to demonstrate the performance of the proposed algorithms in several aspects, such as network capacity, energy efficiency, link connectivity and so on

    The role of SIC on the design of next generation multiple access

    Get PDF
    The interplay of physical layer enhancements and classic random access protocols is the objective of this paper. Successive interference cancellation (SIC) is among the major enhancements of the physical layer. Considering the classic representatives of random access protocols, Slotted ALOHA and Channel Sensing Multiple Access (CSMA), we show that two regimes can be identified as a function of the communication link spectral efficiency. In case of high levels of spectral efficiency, multi-packet reception enabled by SIC is of limited benefit. Sum-rate performance is dominated by the effectiveness of the Medium Access Control (MAC) protocol. On the contrary, for low spectral efficiency levels, sum-rate performance is essentially dependent on physical layer SIC capability, while the MAC protocol has a marginal impact. Limitations due to transmission power dynamic range are shown to induce unfairness among nodes. However, the unfairness issue fades away when the system is driven to work around the sum-rate peak achieved for low spectral efficiency. This can also be confirmed by looking at Age of Information (AoI) metric. The major finding of this work is that SIC can boost performance, while still maintaining a fair sharing of the communication channel among nodes. In this regime, the MAC protocol appears to play a marginal role, while multi-packet reception endowed by SIC is prominent to provide high sum-rate, low energy consumption, and low AoI

    Energy-efficient diversity combining for different access schemes in a multi-path dispersive channel

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e ComputadoresThe forthcoming generation of mobile communications, 5G, will settle a new standard for a larger bandwidth and better Quality of Service (QoS). With the exploding growth rate of user generated data, wireless standards must cope with this growth and at the same time be energy efficient to avoid depleting the batteries of wireless devices. Besides these issues, in a broadband wireless setting QoS can be severely affected from a multipath dispersive channel and therefore be energy demanding. Cross-layered architectures are a good choice to enhance the overall performance of a wireless system. Examples of cross-layered Physical (PHY) - Medium Access Control (MAC) architectures are type-II Diversity Combining (DC) Hybrid-ARQ (H-ARQ) and Multi-user Detection (MUD) schemes. Cross-layered type-II DC H-ARQ schemes reuse failed packet transmissions to enhance data reception on posterior retransmissions; MUD schemes reuse data information from previously collided packets on posterior retransmissions to enhance data reception. For a multipath dispersive channel, a PHY layer analytical model is proposed for Single-Carrier with Frequency Domain Equalization (SC-FDE) that supports DC H-ARQ and MUD. Based on this analytical model, three PHY-MAC protocols are proposed. A crosslayered Time Division Multiple Access (TDMA) scheme that uses DC H-ARQ is modeled and its performance is studied in this document; the performance analysis shows that the scheme performs better with DC and achieves a better energy efficiency at the cost of a higher delay. A novel cross-layered prefix-assisted Direct-Sequence Code Division Multiple Access (DS-CDMA) scheme is proposed and modeled in this document, it uses principles of DC and MUD. This protocol performs better by means of additional retransmissions, achieving better energy efficiency, at the cost of higher redundancy from a code spreading gain. Finally, a novel cross-layered protocol H-ARQ Network Division Multiple Access (H-NDMA) is proposed and modeled, where the combination of DC H-ARQ and MUD is used with the intent of maximizing the system capacity with a lower delay; system results show that the proposed scheme achieves better energy efficiency and a better performance at the cost of a higher number of retransmissions. A comparison of the three cross-layered protocols is made, using the PHY analytical model, under normalized conditions using the same amount of maximum redundancy. Results show that the H-NDMA protocol, in general, obtains the best results, achieving a good performance and a good energy efficiency for a high channel load and low Signal-to-Noise Ratio (SNR). TDMA with DC H-ARQ achieves the best energy efficiency, although presenting the worst delay. Prefix-assisted DS-CDMA in the other hand shows good delay results but presents the worst throughput and energy efficiency

    Single user TCP downstream throughput probability models in IEEE802.11b WLAN system

    Get PDF
    Single User, Transmission Control Protocol Downstream Throughput (TCPDST) probability models in an IEEE802.11b WLAN have been developed, validated and evaluated for performance. Measurement of single user TCPDST were taken using Tamosoft throughput test while that of signal to noise ratio (SNR) were taken using inSSIDer 2.1. The Tamosoft throughput tests were conducted using different quality of service (QoS) traffic. These QoS traffic (which were sent through an infrastructure based network) correspond to different wireless multimedia tags. Measurements were taken in free space, small offices and open corridor environments. By assuming a normal distribution, single user TCPDST Cumulative distribution function (CDF) probability models were developed for different signal categories namely: (i) all the SNR considered, (ii) strong signals only, (iii) grey signals only and (iv) weak signals only. The models were validated and their performances evaluated using root mean square (RMS) errors. RMS errors were computed by comparing model predicted values with validation data. The RMS errors for single user CDF all signals model was 0.1466%. RMS errors for strong signals models, grey signals model and weak signals model respectively were 0.1466%, 0.6756% and 0.1233% indicating acceptable performances. All signals, strong signals, grey signals and weak signals CDF probability models predicted probabilities of obtaining TCPDST values greater than 5Mbps as 74.79%, 90.55%, 13.00% and 4.77% respectively while probabilities of obtaining TCPDST values less than 2Mbps were predicted as 4.91%, 0.00%, 18.98% and 52.41% respectively. These probability models will provide additional useful information needed to design efficient distributed data networks. Keywords: Throughput, TCP, WLAN, probability model

    Distributed approaches for exploiting multiuser diversity in wireless networks

    Full text link
    corecore