957 research outputs found

    Type space on a purely measurable parameter space

    Get PDF
    Several game theoretical topics require the analysis of hierarchical beliefs, particularly in incomplete information situations. For the problem of incomplete information, HarsÂŽanyi suggested the concept of the type space. Later Mertens & Zamir gave a construction of such a type space under topological assumptions imposed on the parameter space. The topological assumptions were weakened by Heifetz, and by Brandenburger & Dekel. In this paper we show that at very natural assumptions upon the structure of the beliefs, the universal type space does exist. We construct a universal type space, which employs purely a measurable parameter space structure

    Finitely additive beliefs and universal type spaces

    Get PDF
    The probabilistic type spaces in the sense of Harsanyi [Management Sci. 14 (1967/68) 159--182, 320--334, 486--502] are the prevalent models used to describe interactive uncertainty. In this paper we examine the existence of a universal type space when beliefs are described by finitely additive probability measures. We find that in the category of all type spaces that satisfy certain measurability conditions (Îș\kappa-measurability, for some fixed regular cardinal Îș\kappa), there is a universal type space (i.e., a terminal object) to which every type space can be mapped in a unique beliefs-preserving way. However, by a probabilistic adaption of the elegant sober-drunk example of Heifetz and Samet [Games Econom. Behav. 22 (1998) 260--273] we show that if all subsets of the spaces are required to be measurable, then there is no universal type space.Comment: Published at http://dx.doi.org/10.1214/009117905000000576 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Probability Logic for Harsanyi Type Spaces

    Full text link
    Probability logic has contributed to significant developments in belief types for game-theoretical economics. We present a new probability logic for Harsanyi Type spaces, show its completeness, and prove both a de-nesting property and a unique extension theorem. We then prove that multi-agent interactive epistemology has greater complexity than its single-agent counterpart by showing that if the probability indices of the belief language are restricted to a finite set of rationals and there are finitely many propositional letters, then the canonical space for probabilistic beliefs with one agent is finite while the canonical one with at least two agents has the cardinality of the continuum. Finally, we generalize the three notions of definability in multimodal logics to logics of probabilistic belief and knowledge, namely implicit definability, reducibility, and explicit definability. We find that S5-knowledge can be implicitly defined by probabilistic belief but not reduced to it and hence is not explicitly definable by probabilistic belief

    Default Logic in a Coherent Setting

    Full text link
    In this talk - based on the results of a forthcoming paper (Coletti, Scozzafava and Vantaggi 2002), presented also by one of us at the Conference on "Non Classical Logic, Approximate Reasoning and Soft-Computing" (Anacapri, Italy, 2001) - we discuss the problem of representing default rules by means of a suitable coherent conditional probability, defined on a family of conditional events. An event is singled-out (in our approach) by a proposition, that is a statement that can be either true or false; a conditional event is consequently defined by means of two propositions and is a 3-valued entity, the third value being (in this context) a conditional probability

    Ignorance and indifference

    Get PDF
    The epistemic state of complete ignorance is not a probability distribution. In it, we assign the same, unique, ignorance degree of belief to any contingent outcome and each of its contingent, disjunctive parts. That this is the appropriate way to represent complete ignorance is established by two instruments, each individually strong enough to identify this state. They are the principle of indifference (PI) and the notion that ignorance is invariant under certain redescriptions of the outcome space, here developed into the 'principle of invariance of ignorance' (PII). Both instruments are so innocuous as almost to be platitudes. Yet the literature in probabilistic epistemology has misdiagnosed them as paradoxical or defective since they generate inconsistencies when conjoined with the assumption that an epistemic state must be a probability distribution. To underscore the need to drop this assumption, I express PII in its most defensible form as relating symmetric descriptions and show that paradoxes still arise if we assume the ignorance state to be a probability distribution. Copyright 2008 by the Philosophy of Science Association. All rights reserved

    Probabilities on Sentences in an Expressive Logic

    Get PDF
    Automated reasoning about uncertain knowledge has many applications. One difficulty when developing such systems is the lack of a completely satisfactory integration of logic and probability. We address this problem directly. Expressive languages like higher-order logic are ideally suited for representing and reasoning about structured knowledge. Uncertain knowledge can be modeled by using graded probabilities rather than binary truth-values. The main technical problem studied in this paper is the following: Given a set of sentences, each having some probability of being true, what probability should be ascribed to other (query) sentences? A natural wish-list, among others, is that the probability distribution (i) is consistent with the knowledge base, (ii) allows for a consistent inference procedure and in particular (iii) reduces to deductive logic in the limit of probabilities being 0 and 1, (iv) allows (Bayesian) inductive reasoning and (v) learning in the limit and in particular (vi) allows confirmation of universally quantified hypotheses/sentences. We translate this wish-list into technical requirements for a prior probability and show that probabilities satisfying all our criteria exist. We also give explicit constructions and several general characterizations of probabilities that satisfy some or all of the criteria and various (counter) examples. We also derive necessary and sufficient conditions for extending beliefs about finitely many sentences to suitable probabilities over all sentences, and in particular least dogmatic or least biased ones. We conclude with a brief outlook on how the developed theory might be used and approximated in autonomous reasoning agents. Our theory is a step towards a globally consistent and empirically satisfactory unification of probability and logic.Comment: 52 LaTeX pages, 64 definiton/theorems/etc, presented at conference Progic 2011 in New Yor

    Bayesianism, Infinite Decisions, and Binding

    Get PDF
    We pose and resolve several vexing decision theoretic puzzles. Some are variants of existing puzzles, such as ‘Trumped’ (Arntzenius and McCarthy 1997), ‘Rouble trouble’ (Arntzenius and Barrett 1999), ‘The airtight Dutch book’ (McGee 1999), and ‘The two envelopes puzzle’ (Broome 1995). Others are new. A unified resolution of the puzzles shows that Dutch book arguments have no force in infinite cases. It thereby provides evidence that reasonable utility functions may be unbounded and that reasonable credence functions need not be countably additive. The resolution also shows that when infinitely many decisions are involved, the difference between making the decisions simultaneously and making them sequentially can be the difference between riches and ruin. Finally, the resolution reveals a new way in which the ability to make binding commitments can save perfectly rational agents from sure losses
    • 

    corecore