60,570 research outputs found

    A Dynamical Systems Approach for Static Evaluation in Go

    Full text link
    In the paper arguments are given why the concept of static evaluation has the potential to be a useful extension to Monte Carlo tree search. A new concept of modeling static evaluation through a dynamical system is introduced and strengths and weaknesses are discussed. The general suitability of this approach is demonstrated.Comment: IEEE Transactions on Computational Intelligence and AI in Games, vol 3 (2011), no

    How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation

    Get PDF
    This paper addresses two questions in the context of neuronal networks dynamics, using methods from dynamical systems theory and statistical physics: (i) How to characterize the statistical properties of sequences of action potentials ("spike trains") produced by neuronal networks ? and; (ii) what are the effects of synaptic plasticity on these statistics ? We introduce a framework in which spike trains are associated to a coding of membrane potential trajectories, and actually, constitute a symbolic coding in important explicit examples (the so-called gIF models). On this basis, we use the thermodynamic formalism from ergodic theory to show how Gibbs distributions are natural probability measures to describe the statistics of spike trains, given the empirical averages of prescribed quantities. As a second result, we show that Gibbs distributions naturally arise when considering "slow" synaptic plasticity rules where the characteristic time for synapse adaptation is quite longer than the characteristic time for neurons dynamics.Comment: 39 pages, 3 figure

    Dynamical localization simulated on a few qubits quantum computer

    Get PDF
    We show that a quantum computer operating with a small number of qubits can simulate the dynamical localization of classical chaos in a system described by the quantum sawtooth map model. The dynamics of the system is computed efficiently up to a time t≥ℓt\geq \ell, and then the localization length ℓ\ell can be obtained with accuracy ν\nu by means of order 1/ν21/\nu^2 computer runs, followed by coarse grained projective measurements on the computational basis. We also show that in the presence of static imperfections a reliable computation of the localization length is possible without error correction up to an imperfection threshold which drops polynomially with the number of qubits.Comment: 8 pages, 8 figure
    • …
    corecore