241,943 research outputs found

    Anomalous scaling due to correlations: Limit theorems and self-similar processes

    Full text link
    We derive theorems which outline explicit mechanisms by which anomalous scaling for the probability density function of the sum of many correlated random variables asymptotically prevails. The results characterize general anomalous scaling forms, justify their universal character, and specify universality domains in the spaces of joint probability density functions of the summand variables. These density functions are assumed to be invariant under arbitrary permutations of their arguments. Examples from the theory of critical phenomena are discussed. The novel notion of stability implied by the limit theorems also allows us to define sequences of random variables whose sum satisfies anomalous scaling for any finite number of summands. If regarded as developing in time, the stochastic processes described by these variables are non-Markovian generalizations of Gaussian processes with uncorrelated increments, and provide, e.g., explicit realizations of a recently proposed model of index evolution in finance.Comment: Through text revision. 15 pages, 3 figure

    Additive-multiplicative stochastic models of financial mean-reverting processes

    Full text link
    We investigate a generalized stochastic model with the property known as mean reversion, that is, the tendency to relax towards a historical reference level. Besides this property, the dynamics is driven by multiplicative and additive Wiener processes. While the former is modulated by the internal behavior of the system, the latter is purely exogenous. We focus on the stochastic dynamics of volatilities, but our model may also be suitable for other financial random variables exhibiting the mean reversion property. The generalized model contains, as particular cases, many early approaches in the literature of volatilities or, more generally, of mean-reverting financial processes. We analyze the long-time probability density function associated to the model defined through a It\^o-Langevin equation. We obtain a rich spectrum of shapes for the probability function according to the model parameters. We show that additive-multiplicative processes provide realistic models to describe empirical distributions, for the whole range of data.Comment: 8 pages, 3 figure

    A certain class of Laplace transforms with applications to reaction and reaction-diffusion equations

    Full text link
    A class of Laplace transforms is examined to show that particular cases of this class are associated with production-destruction and reaction-diffusion problems in physics, study of differences of independently distributed random variables and the concept of Laplacianness in statistics, alpha-Laplace and Mittag-Leffler stochastic processes, the concepts of infinite divisibility and geometric infinite divisibility problems in probability theory and certain fractional integrals and fractional derivatives. A number of applications are pointed out with special reference to solutions of fractional reaction and reaction-diffusion equations and their generalizations.Comment: LaTeX, 12 pages, corrected typo

    Density function of random differential equations via finite difference schemes: a theoretical analysis of a random diffusion-reaction Poisson-type problem

    Full text link
    [EN] A computational approach to approximate the probability density function of random differential equations is based on transformation of random variables and finite difference schemes. The theoretical analysis of this computational method has not been performed in the extant literature. In this paper, we deal with a particular random differential equation: a random diffusion-reaction Poisson-type problem of the form , , with boundary conditions , . Here, alpha, A and B are random variables and is a stochastic process. The term is a stochastic process that solves the random problem in the sample path sense. Via a finite difference scheme, we approximate with a sequence of stochastic processes in both the almost sure and senses. This allows us to find mild conditions under which the probability density function of can be approximated. Illustrative examples are included.This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia.Calatayud, J.; Cortés, J.; Díaz, J.; Jornet, M. (2020). Density function of random differential equations via finite difference schemes: a theoretical analysis of a random diffusion-reaction Poisson-type problem. Stochastics: An International Journal of Probability and Stochastic Processes (Online). 92(4):627-641. https://doi.org/10.1080/17442508.2019.1645849S627641924Berman, A., & Plemmons, R. J. (1994). Nonnegative Matrices in the Mathematical Sciences. doi:10.1137/1.9781611971262Brezis, H. (2011). Functional Analysis, Sobolev Spaces and Partial Differential Equations. doi:10.1007/978-0-387-70914-7Dorini, F. A., Cecconello, M. S., & Dorini, L. B. (2016). On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Communications in Nonlinear Science and Numerical Simulation, 33, 160-173. doi:10.1016/j.cnsns.2015.09.009Hussein, A., & Selim, M. M. (2012). Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Applied Mathematics and Computation, 218(13), 7193-7203. doi:10.1016/j.amc.2011.12.088Jost, J. (2007). Partial Differential Equations. Graduate Texts in Mathematics. doi:10.1007/978-0-387-49319-0Kallianpur, G. (1980). Stochastic Filtering Theory. Stochastic Modelling and Applied Probability. doi:10.1007/978-1-4757-6592-2Lord, G. J., Powell, C. E., & Shardlow, T. (2009). An Introduction to Computational Stochastic PDEs. doi:10.1017/cbo9781139017329Strand, J. . (1970). Random ordinary differential equations. Journal of Differential Equations, 7(3), 538-553. doi:10.1016/0022-0396(70)90100-2Villafuerte, L., Braumann, C. A., Cortés, J.-C., & Jódar, L. (2010). Random differential operational calculus: Theory and applications. Computers & Mathematics with Applications, 59(1), 115-125. doi:10.1016/j.camwa.2009.08.061Williams, D. (1991). Probability with Martingales. doi:10.1017/cbo978051181365
    • …
    corecore