11 research outputs found

    Computing and communications for the software-defined metamaterial paradigm: a context analysis

    Get PDF
    Metamaterials are artificial structures that have recently enabled the realization of novel electromagnetic components with engineered and even unnatural functionalities. Existing metamaterials are specifically designed for a single application working under preset conditions (e.g., electromagnetic cloaking for a fixed angle of incidence) and cannot be reused. Software-defined metamaterials (SDMs) are a much sought-after paradigm shift, exhibiting electromagnetic properties that can be reconfigured at runtime using a set of software primitives. To enable this new technology, SDMs require the integration of a network of controllers within the structure of the metamaterial, where each controller interacts locally and communicates globally to obtain the programmed behavior. The design approach for such controllers and the interconnection network, however, remains unclear due to the unique combination of constraints and requirements of the scenario. To bridge this gap, this paper aims to provide a context analysis from the computation and communication perspectives. Then, analogies are drawn between the SDM scenario and other applications both at the micro and nano scales, identifying possible candidates for the implementation of the controllers and the intra-SDM network. Finally, the main challenges of SDMs related to computing and communications are outlined.Peer ReviewedPostprint (published version

    Diffusion-based physical channel Identification for Molecule Nanonetworks

    Get PDF
    Català: El treball és una exploració del canal de difusió molecular per nanoredes moleculars, en el qual s'identifica la resposta impulsional i en freqüència del canal, es comprova la seva linealitat i invariància i s'extreuen les principals característiques de comunicació. S'avaluen diferents tècniques de modulació.Castellano: El trabajo es una exploración del canal de difusión molecular para nanoredes moleculares, en el cual se identifica la respuesta impulsional y en frecuencia del canal, se comprueba su linealidad e invarianza y se extraen las principales características de comunicación. Se evalúan diferentes técnicas de modulación.English: In this work, the diffusion-based MC channel is explored in order to extract its main communication metrics, such as attenuation and delay with respect to frequency and distance. The LTI property is proven to be a valid assumption for normal diffusion-based single/multi-transmitter scenarios. Different pulse-based modulation techniques are compared by means of throughput, operation range, energy requirements and ISI, and the optimal pulse shape for these modulations is provided. Finally, interferences are evaluated in a broadcast communication scenario and diffusion-based noise is observed and assessed with reference to already proposed stochastic models.The exploration of the physical diffusion-based communication channel is based on simulations

    Micro/Nano Structures and Systems

    Get PDF
    Micro/Nano Structures and Systems: Analysis, Design, Manufacturing, and Reliability is a comprehensive guide that explores the various aspects of micro- and nanostructures and systems. From analysis and design to manufacturing and reliability, this reprint provides a thorough understanding of the latest methods and techniques used in the field. With an emphasis on modern computational and analytical methods and their integration with experimental techniques, this reprint is an invaluable resource for researchers and engineers working in the field of micro- and nanosystems, including micromachines, additive manufacturing at the microscale, micro/nano-electromechanical systems, and more. Written by leading experts in the field, this reprint offers a complete understanding of the physical and mechanical behavior of micro- and nanostructures, making it an essential reference for professionals in this field
    corecore