379 research outputs found

    Deep learning approach for breast cancer diagnosis

    Full text link
    Breast cancer is one of the leading fatal disease worldwide with high risk control if early discovered. Conventional method for breast screening is x-ray mammography, which is known to be challenging for early detection of cancer lesions. The dense breast structure produced due to the compression process during imaging lead to difficulties to recognize small size abnormalities. Also, inter- and intra-variations of breast tissues lead to significant difficulties to achieve high diagnosis accuracy using hand-crafted features. Deep learning is an emerging machine learning technology that requires a relatively high computation power. Yet, it proved to be very effective in several difficult tasks that requires decision making at the level of human intelligence. In this paper, we develop a new network architecture inspired by the U-net structure that can be used for effective and early detection of breast cancer. Results indicate a high rate of sensitivity and specificity that indicate potential usefulness of the proposed approach in clinical use

    A Decision-Making Tool for Early Detection of Breast Cancer on Mammographic Images

    Get PDF
    Breast cancer is one of the most dangerous types of cancer in the world among females. In the medical industry, the early detection of a breast abnormality in a mammogram can significantly decrease the death rate caused by breast cancer. Therefore, researchers directed their focus and efforts to find better solutions. Whereas researchers earlier used semi-automatic algorithms of machine learning, recently the attention is redirected toward deep learning algorithms that automatically extract features. Therefore, in the research study, two pre-trained Convolutional Neural Network models, VGG16 and ResNet50, have been used and applied on mammogram images to classify their abnormalities in terms of (1) the Benign Calcification, (2) the Malignant Calcification, (3) the Benign Mass, and (4) the Malignant Mass. The mammographic images of the CBIS-DDSM dataset are used. In the training phase, various experiments are performed on ROI images to decide on the best model configuration and fine-tuning depth. The experimental results showed that the VGG16 model provided a remarkable advancement over the ResNet50 model; the accuracy obtained was 80.0% in the first model whereas the second model could classify with a 60.0% accuracy almost randomly. Apart from accuracy, the other performance metrics used in this study are precision, recall, F1-Score and AUC. Our evaluation, based on these performance metrics, shows that accurate detection effect is obtained from the two networks with VGG16 being the most accurate. Finally, a decision support tool is developed which classifies the full mammogram images based on the fine-tuned VGG16 architecture into Benign Calcification, Malignant Calcification, Benign Mass, and Malignant Mass

    Deep-Learning-Based Computer- Aided Systems for Breast Cancer Imaging: A Critical Review

    Full text link
    [EN] This paper provides a critical review of the literature on deep learning applications in breast tumor diagnosis using ultrasound and mammography images. It also summarizes recent advances in computer-aided diagnosis/detection (CAD) systems, which make use of new deep learning methods to automatically recognize breast images and improve the accuracy of diagnoses made by radiologists. This review is based upon published literature in the past decade (January 2010-January 2020), where we obtained around 250 research articles, and after an eligibility process, 59 articles were presented in more detail. The main findings in the classification process revealed that new DL-CAD methods are useful and effective screening tools for breast cancer, thus reducing the need for manual feature extraction. The breast tumor research community can utilize this survey as a basis for their current and future studies.This project has been co-financed by the Spanish Government Grant PID2019-107790RB-C22, "Software development for a continuous PET crystal systems applied to breast cancer".Jiménez-Gaona, Y.; Rodríguez Álvarez, MJ.; Lakshminarayanan, V. (2020). Deep-Learning-Based Computer- Aided Systems for Breast Cancer Imaging: A Critical Review. Applied Sciences. 10(22):1-29. https://doi.org/10.3390/app10228298S1291022Jemal, A., Bray, F., Center, M. M., Ferlay, J., Ward, E., & Forman, D. (2011). Global cancer statistics. CA: A Cancer Journal for Clinicians, 61(2), 69-90. doi:10.3322/caac.20107Gao, F., Chia, K.-S., Ng, F.-C., Ng, E.-H., & Machin, D. (2002). Interval cancers following breast cancer screening in Singaporean women. International Journal of Cancer, 101(5), 475-479. doi:10.1002/ijc.10636Munir, K., Elahi, H., Ayub, A., Frezza, F., & Rizzi, A. (2019). Cancer Diagnosis Using Deep Learning: A Bibliographic Review. Cancers, 11(9), 1235. doi:10.3390/cancers11091235Nahid, A.-A., & Kong, Y. (2017). Involvement of Machine Learning for Breast Cancer Image Classification: A Survey. Computational and Mathematical Methods in Medicine, 2017, 1-29. doi:10.1155/2017/3781951Ramadan, S. Z. (2020). Methods Used in Computer-Aided Diagnosis for Breast Cancer Detection Using Mammograms: A Review. Journal of Healthcare Engineering, 2020, 1-21. doi:10.1155/2020/9162464CHAN, H.-P., DOI, K., VYBRONY, C. J., SCHMIDT, R. A., METZ, C. E., LAM, K. L., … MACMAHON, H. (1990). Improvement in Radiologists?? Detection of Clustered Microcalcifications on Mammograms. Investigative Radiology, 25(10), 1102-1110. doi:10.1097/00004424-199010000-00006Olsen, O., & Gøtzsche, P. C. (2001). Cochrane review on screening for breast cancer with mammography. The Lancet, 358(9290), 1340-1342. doi:10.1016/s0140-6736(01)06449-2Mann, R. M., Kuhl, C. K., Kinkel, K., & Boetes, C. (2008). Breast MRI: guidelines from the European Society of Breast Imaging. European Radiology, 18(7), 1307-1318. doi:10.1007/s00330-008-0863-7Jalalian, A., Mashohor, S. B. T., Mahmud, H. R., Saripan, M. I. B., Ramli, A. R. B., & Karasfi, B. (2013). Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review. Clinical Imaging, 37(3), 420-426. doi:10.1016/j.clinimag.2012.09.024Sarno, A., Mettivier, G., & Russo, P. (2015). Dedicated breast computed tomography: Basic aspects. Medical Physics, 42(6Part1), 2786-2804. doi:10.1118/1.4919441Njor, S., Nyström, L., Moss, S., Paci, E., Broeders, M., Segnan, N., & Lynge, E. (2012). Breast Cancer Mortality in Mammographic Screening in Europe: A Review of Incidence-Based Mortality Studies. Journal of Medical Screening, 19(1_suppl), 33-41. doi:10.1258/jms.2012.012080Morrell, S., Taylor, R., Roder, D., & Dobson, A. (2012). Mammography screening and breast cancer mortality in Australia: an aggregate cohort study. Journal of Medical Screening, 19(1), 26-34. doi:10.1258/jms.2012.011127Marmot, M. G., Altman, D. G., Cameron, D. A., Dewar, J. A., Thompson, S. G., & Wilcox, M. (2013). The benefits and harms of breast cancer screening: an independent review. British Journal of Cancer, 108(11), 2205-2240. doi:10.1038/bjc.2013.177Pisano, E. D., Gatsonis, C., Hendrick, E., Yaffe, M., Baum, J. K., Acharyya, S., … Rebner, M. (2005). Diagnostic Performance of Digital versus Film Mammography for Breast-Cancer Screening. New England Journal of Medicine, 353(17), 1773-1783. doi:10.1056/nejmoa052911Carney, P. A., Miglioretti, D. L., Yankaskas, B. C., Kerlikowske, K., Rosenberg, R., Rutter, C. M., … Ballard-Barbash, R. (2003). Individual and Combined Effects of Age, Breast Density, and Hormone Replacement Therapy Use on the Accuracy of Screening Mammography. Annals of Internal Medicine, 138(3), 168. doi:10.7326/0003-4819-138-3-200302040-00008Woodard, D. B., Gelfand, A. E., Barlow, W. E., & Elmore, J. G. (2007). Performance assessment for radiologists interpreting screening mammography. Statistics in Medicine, 26(7), 1532-1551. doi:10.1002/sim.2633Cole, E. B., Pisano, E. D., Kistner, E. O., Muller, K. E., Brown, M. E., Feig, S. A., … Braeuning, M. P. (2003). Diagnostic Accuracy of Digital Mammography in Patients with Dense Breasts Who Underwent Problem-solving Mammography: Effects of Image Processing and Lesion Type. Radiology, 226(1), 153-160. doi:10.1148/radiol.2261012024Boyd, N. F., Guo, H., Martin, L. J., Sun, L., Stone, J., Fishell, E., … Yaffe, M. J. (2007). Mammographic Density and the Risk and Detection of Breast Cancer. New England Journal of Medicine, 356(3), 227-236. doi:10.1056/nejmoa062790Bird, R. E., Wallace, T. W., & Yankaskas, B. C. (1992). Analysis of cancers missed at screening mammography. Radiology, 184(3), 613-617. doi:10.1148/radiology.184.3.1509041Kerlikowske, K. (2000). Performance of Screening Mammography among Women with and without a First-Degree Relative with Breast Cancer. Annals of Internal Medicine, 133(11), 855. doi:10.7326/0003-4819-133-11-200012050-00009Nunes, F. L. S., Schiabel, H., & Goes, C. E. (2006). Contrast Enhancement in Dense Breast Images to Aid Clustered Microcalcifications Detection. Journal of Digital Imaging, 20(1), 53-66. doi:10.1007/s10278-005-6976-5Dinnes, J., Moss, S., Melia, J., Blanks, R., Song, F., & Kleijnen, J. (2001). Effectiveness and cost-effectiveness of double reading of mammograms in breast cancer screening: findings of a systematic review. The Breast, 10(6), 455-463. doi:10.1054/brst.2001.0350Robinson, P. J. (1997). Radiology’s Achilles’ heel: error and variation in the interpretation of the Röntgen image. The British Journal of Radiology, 70(839), 1085-1098. doi:10.1259/bjr.70.839.9536897Rangayyan, R. M., Ayres, F. J., & Leo Desautels, J. E. (2007). A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs. Journal of the Franklin Institute, 344(3-4), 312-348. doi:10.1016/j.jfranklin.2006.09.003Vyborny, C. J., Giger, M. L., & Nishikawa, R. M. (2000). COMPUTER-AIDED DETECTION AND DIAGNOSIS OF BREAST CANCER. Radiologic Clinics of North America, 38(4), 725-740. doi:10.1016/s0033-8389(05)70197-4Giger, M. L. (2018). Machine Learning in Medical Imaging. Journal of the American College of Radiology, 15(3), 512-520. doi:10.1016/j.jacr.2017.12.028Xu, Y., Wang, Y., Yuan, J., Cheng, Q., Wang, X., & Carson, P. L. (2019). Medical breast ultrasound image segmentation by machine learning. Ultrasonics, 91, 1-9. doi:10.1016/j.ultras.2018.07.006Shan, J., Alam, S. K., Garra, B., Zhang, Y., & Ahmed, T. (2016). Computer-Aided Diagnosis for Breast Ultrasound Using Computerized BI-RADS Features and Machine Learning Methods. Ultrasound in Medicine & Biology, 42(4), 980-988. doi:10.1016/j.ultrasmedbio.2015.11.016Zhang, Q., Xiao, Y., Dai, W., Suo, J., Wang, C., Shi, J., & Zheng, H. (2016). Deep learning based classification of breast tumors with shear-wave elastography. Ultrasonics, 72, 150-157. doi:10.1016/j.ultras.2016.08.004Cheng, J.-Z., Ni, D., Chou, Y.-H., Qin, J., Tiu, C.-M., Chang, Y.-C., … Chen, C.-M. (2016). Computer-Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans. Scientific Reports, 6(1). doi:10.1038/srep24454Shin, S. Y., Lee, S., Yun, I. D., Kim, S. M., & Lee, K. M. (2019). Joint Weakly and Semi-Supervised Deep Learning for Localization and Classification of Masses in Breast Ultrasound Images. IEEE Transactions on Medical Imaging, 38(3), 762-774. doi:10.1109/tmi.2018.2872031Wang, J., Ding, H., Bidgoli, F. A., Zhou, B., Iribarren, C., Molloi, S., & Baldi, P. (2017). Detecting Cardiovascular Disease from Mammograms With Deep Learning. IEEE Transactions on Medical Imaging, 36(5), 1172-1181. doi:10.1109/tmi.2017.2655486Kooi, T., Litjens, G., van Ginneken, B., Gubern-Mérida, A., Sánchez, C. I., Mann, R., … Karssemeijer, N. (2017). Large scale deep learning for computer aided detection of mammographic lesions. Medical Image Analysis, 35, 303-312. doi:10.1016/j.media.2016.07.007Debelee, T. G., Schwenker, F., Ibenthal, A., & Yohannes, D. (2019). Survey of deep learning in breast cancer image analysis. Evolving Systems, 11(1), 143-163. doi:10.1007/s12530-019-09297-2Keen, J. D., Keen, J. M., & Keen, J. E. (2018). Utilization of Computer-Aided Detection for Digital Screening Mammography in the United States, 2008 to 2016. Journal of the American College of Radiology, 15(1), 44-48. doi:10.1016/j.jacr.2017.08.033Henriksen, E. L., Carlsen, J. F., Vejborg, I. M., Nielsen, M. B., & Lauridsen, C. A. (2018). The efficacy of using computer-aided detection (CAD) for detection of breast cancer in mammography screening: a systematic review. Acta Radiologica, 60(1), 13-18. doi:10.1177/0284185118770917Gao, Y., Geras, K. J., Lewin, A. A., & Moy, L. (2019). New Frontiers: An Update on Computer-Aided Diagnosis for Breast Imaging in the Age of Artificial Intelligence. American Journal of Roentgenology, 212(2), 300-307. doi:10.2214/ajr.18.20392Pacilè, S., Lopez, J., Chone, P., Bertinotti, T., Grouin, J. M., & Fillard, P. (2020). Improving Breast Cancer Detection Accuracy of Mammography with the Concurrent Use of an Artificial Intelligence Tool. Radiology: Artificial Intelligence, 2(6), e190208. doi:10.1148/ryai.2020190208Huynh, B. Q., Li, H., & Giger, M. L. (2016). Digital mammographic tumor classification using transfer learning from deep convolutional neural networks. Journal of Medical Imaging, 3(3), 034501. doi:10.1117/1.jmi.3.3.034501Yap, M. H., Pons, G., Marti, J., Ganau, S., Sentis, M., Zwiggelaar, R., … Marti, R. (2018). Automated Breast Ultrasound Lesions Detection Using Convolutional Neural Networks. IEEE Journal of Biomedical and Health Informatics, 22(4), 1218-1226. doi:10.1109/jbhi.2017.2731873Moon, W. K., Lee, Y.-W., Ke, H.-H., Lee, S. H., Huang, C.-S., & Chang, R.-F. (2020). Computer‐aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Computer Methods and Programs in Biomedicine, 190, 105361. doi:10.1016/j.cmpb.2020.105361LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. doi:10.1038/nature14539Miotto, R., Wang, F., Wang, S., Jiang, X., & Dudley, J. T. (2017). Deep learning for healthcare: review, opportunities and challenges. Briefings in Bioinformatics, 19(6), 1236-1246. doi:10.1093/bib/bbx044Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., … Summers, R. M. (2016). Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Transactions on Medical Imaging, 35(5), 1285-1298. doi:10.1109/tmi.2016.2528162Lee, J.-G., Jun, S., Cho, Y.-W., Lee, H., Kim, G. B., Seo, J. B., & Kim, N. (2017). Deep Learning in Medical Imaging: General Overview. Korean Journal of Radiology, 18(4), 570. doi:10.3348/kjr.2017.18.4.570Suzuki, K. (2017). Overview of deep learning in medical imaging. Radiological Physics and Technology, 10(3), 257-273. doi:10.1007/s12194-017-0406-5Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2010). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. International Journal of Surgery, 8(5), 336-341. doi:10.1016/j.ijsu.2010.02.007Khan, K. S., Kunz, R., Kleijnen, J., & Antes, G. (2003). Five Steps to Conducting a Systematic Review. Journal of the Royal Society of Medicine, 96(3), 118-121. doi:10.1177/014107680309600304Han, S., Kang, H.-K., Jeong, J.-Y., Park, M.-H., Kim, W., Bang, W.-C., & Seong, Y.-K. (2017). A deep learning framework for supporting the classification of breast lesions in ultrasound images. Physics in Medicine & Biology, 62(19), 7714-7728. doi:10.1088/1361-6560/aa82ecMoreira, I. C., Amaral, I., Domingues, I., Cardoso, A., Cardoso, M. J., & Cardoso, J. S. (2012). INbreast. Academic Radiology, 19(2), 236-248. doi:10.1016/j.acra.2011.09.014Abdelhafiz, D., Yang, C., Ammar, R., & Nabavi, S. (2019). Deep convolutional neural networks for mammography: advances, challenges and applications. BMC Bioinformatics, 20(S11). doi:10.1186/s12859-019-2823-4Byra, M., Jarosik, P., Szubert, A., Galperin, M., Ojeda-Fournier, H., Olson, L., … Andre, M. (2020). Breast mass segmentation in ultrasound with selective kernel U-Net convolutional neural network. Biomedical Signal Processing and Control, 61, 102027. doi:10.1016/j.bspc.2020.102027Jiao, Z., Gao, X., Wang, Y., & Li, J. (2016). A deep feature based framework for breast masses classification. Neurocomputing, 197, 221-231. doi:10.1016/j.neucom.2016.02.060Arevalo, J., González, F. A., Ramos-Pollán, R., Oliveira, J. L., & Guevara Lopez, M. A. (2016). Representation learning for mammography mass lesion classification with convolutional neural networks. Computer Methods and Programs in Biomedicine, 127, 248-257. doi:10.1016/j.cmpb.2015.12.014Peng, W., Mayorga, R. V., & Hussein, E. M. A. (2016). An automated confirmatory system for analysis of mammograms. Computer Methods and Programs in Biomedicine, 125, 134-144. doi:10.1016/j.cmpb.2015.09.019Al-Dhabyani, W., Gomaa, M., Khaled, H., & Fahmy, A. (2020). Dataset of breast ultrasound images. Data in Brief, 28, 104863. doi:10.1016/j.dib.2019.104863Piotrzkowska-Wróblewska, H., Dobruch-Sobczak, K., Byra, M., & Nowicki, A. (2017). Open access database of raw ultrasonic signals acquired from malignant and benign breast lesions. Medical Physics, 44(11), 6105-6109. doi:10.1002/mp.12538Fujita, H. (2020). AI-based computer-aided diagnosis (AI-CAD): the latest review to read first. Radiological Physics and Technology, 13(1), 6-19. doi:10.1007/s12194-019-00552-4Sengupta, S., Singh, A., Leopold, H. A., Gulati, T., & Lakshminarayanan, V. (2020). Ophthalmic diagnosis using deep learning with fundus images – A critical review. Artificial Intelligence in Medicine, 102, 101758. doi:10.1016/j.artmed.2019.101758Ganesan, K., Acharya, U. R., Chua, K. C., Min, L. C., & Abraham, K. T. (2013). Pectoral muscle segmentation: A review. Computer Methods and Programs in Biomedicine, 110(1), 48-57. doi:10.1016/j.cmpb.2012.10.020Huang, Q., Luo, Y., & Zhang, Q. (2017). Breast ultrasound image segmentation: a survey. International Journal of Computer Assisted Radiology and Surgery, 12(3), 493-507. doi:10.1007/s11548-016-1513-1Noble, J. A., & Boukerroui, D. (2006). Ultrasound image segmentation: a survey. IEEE Transactions on Medical Imaging, 25(8), 987-1010. doi:10.1109/tmi.2006.877092Kallergi, M., Woods, K., Clarke, L. P., Qian, W., & Clark, R. A. (1992). Image segmentation in digital mammography: Comparison of local thresholding and region growing algorithms. Computerized Medical Imaging and Graphics, 16(5), 323-331. doi:10.1016/0895-6111(92)90145-yTsantis, S., Dimitropoulos, N., Cavouras, D., & Nikiforidis, G. (2006). A hybrid multi-scale model for thyroid nodule boundary detection on ultrasound images. Computer Methods and Programs in Biomedicine, 84(2-3), 86-98. doi:10.1016/j.cmpb.2006.09.006Ilesanmi, A. E., Idowu, O. P., & Makhanov, S. S. (2020). Multiscale superpixel method for segmentation of breast ultrasound. Computers in Biology and Medicine, 125, 103879. doi:10.1016/j.compbiomed.2020.103879Chen, D.-R., Chang, R.-F., Kuo, W.-J., Chen, M.-C., & Huang, Y. .-L. (2002). Diagnosis of breast tumors with sonographic texture analysis using wavelet transform and neural networks. Ultrasound in Medicine & Biology, 28(10), 1301-1310. doi:10.1016/s0301-5629(02)00620-8Cheng, H. D., Shan, J., Ju, W., Guo, Y., & Zhang, L. (2010). Automated breast cancer detection and classification using ultrasound images: A survey. Pattern Recognition, 43(1), 299-317. doi:10.1016/j.patcog.2009.05.012Chan, H.-P., Wei, D., Helvie, M. A., Sahiner, B., Adler, D. D., Goodsitt, M. M., & Petrick, N. (1995). Computer-aided classification of mammographic masses and normal tissue: linear discriminant analysis in texture feature space. Physics in Medicine and Biology, 40(5), 857-876. doi:10.1088/0031-9155/40/5/010Tanaka, T., Torii, S., Kabuta, I., Shimizu, K., & Tanaka, M. (2007). Pattern Classification of Nevus with Texture Analysis. IEEJ Transactions on Electrical and Electronic Engineering, 3(1), 143-150. doi:10.1002/tee.20246Singh, B., Jain, V. K., & Singh, S. (2014). Mammogram Mass Classification Using Support Vector Machine with Texture, Shape Features and Hierarchical Centroid Method. Journal of Medical Imaging and Health Informatics, 4(5), 687-696. doi:10.1166/jmihi.2014.1312Pal, N. R., Bhowmick, B., Patel, S. K., Pal, S., & Das, J. (2008). A multi-stage neural network aided system for detection of microcalcifications in digitized mammograms. Neurocomputing, 71(13-15), 2625-2634. doi:10.1016/j.neucom.2007.06.015Ayer, T., Chen, Q., & Burnside, E. S. (2013). Artificial Neural Networks in Mammography Interpretation and Diagnostic Decision Making. Computational and Mathematical Methods in Medicine, 2013, 1-10. doi:10.1155/2013/832509Sumbaly, R., Vishnusri, N., & Jeyalatha, S. (2014). Diagnosis of Breast Cancer using Decision Tree Data Mining Technique. International Journal of Computer Applications, 98(10), 16-24. doi:10.5120/17219-7456Landwehr, N., Hall, M., & Frank, E. (2005). Logistic Model Trees. Machine Learning, 59(1-2), 161-205. doi:10.1007/s10994-005-0466-3Abdel-Zaher, A. M., & Eldeib, A. M. (2016). Breast cancer classification using deep belief networks. Expert Systems with Applications, 46, 139-144. doi:10.1016/j.eswa.2015.10.015Nishikawa, R. M., Giger, M. L., Doi, K., Metz, C. E., Yin, F.-F., Vyborny, C. J., & Schmidt, R. A. (1994). Effect of case selection on the performance of computer-aided detection schemes. Medical Physics, 21(2), 265-269. doi:10.1118/1.597287Guo, R., Lu, G., Qin, B., & Fei, B. (2018). Ultrasound Imaging Technologies for Breast Cancer Detection and Management: A Review. Ultrasound in Medicine & Biology, 44(1), 37-70. doi:10.1016/j.ultrasmedbio.2017.09.012Kang, C.-C., Wang, W.-J., & Kang, C.-H. (2012). Image segmentation with complicated background by using seeded region growing. AEU - International Journal of Electronics and Communications, 66(9), 767-771. doi:10.1016/j.aeue.2012.01.011Prabusankarlal, K. M., Thirumoorthy, P., & Manavalan, R. (2014). Computer Aided Breast Cancer Diagnosis Techniques in Ultrasound: A Survey. Journal of Medical Imaging and Health Informatics, 4(3), 331-349. doi:10.1166/jmihi.2014.1269Abdallah, Y. M., Elgak, S., Zain, H., Rafiq, M., A. Ebaid, E., & A. Elnaema, A. (2018). Breast cancer detection using image enhancement and segmentation algorithms. Biomedical Research, 29(20). doi:10.4066/biomedicalresearch.29-18-1106K.U, S., & S, G. R. (2016). Objective Quality Assessment of Image Enhancement Methods in Digital Mammography - A Comparative Study. Signal & Image Processing : An International Journal, 7(4), 01-13. doi:10.5121/sipij.2016.7401Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., … Zuiderveld, K. (1987). Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 39(3), 355-368. doi:10.1016/s0734-189x(87)80186-xPisano, E. D., Zong, S., Hemminger, B. M., DeLuca, M., Johnston, R. E., Muller, K., … Pizer, S. M. (1998). Contrast Limited Adaptive Histogram Equalization image processing to improve the detection of simulated spiculations in dense mammograms. Journal of Digital Imaging, 11(4), 193-200. doi:10.1007/bf03178082Wan, J., Yin, H., Chong, A.-X., & Liu, Z.-H. (2020). Progressive residual networks for image super-resolution. Applied Intelligence, 50(5), 1620-1632. doi:10.1007/s10489-019-01548-8Umehara, K., Ota, J., & Ishida, T. (2017). Super-Resolution Imaging of Mammograms Based on the Super-Resolution Convolutional Neural Network. Open Journal of Medical Imaging, 07(04), 180-195. doi:10.4236/ojmi.2017.74018Dong, C., Loy, C. C., He, K., & Tang, X. (2016). Image Super-Resolution Using Deep Convolutional Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(2), 295-307. doi:10.1109/tpami.2015.2439281Jiang, Y., & Li, J. (2020). Generative Adversarial Network for Image Super-Resolution Combining Texture Loss. Applied Sciences, 10(5), 1729. doi:10.3390/app10051729Schultz, R. R., & Stevenson, R. L. (1994). A Bayesian approach to image expansion for improved definition. IEEE Transactions on Image Processing, 3(3), 233-242. doi:10.1109/83.287017Lei Zhang, & Xiaolin Wu. (2006). An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Transactions on Image Processing, 15(8), 2226-2238. doi:10.1109/tip.2006.877407Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1). doi:10.1186/s40537-019-0197-0Weiss, K., Khoshgoftaar, T. M., & Wang, D. (2016). A survey of transfer learning. Journal of Big Data, 3(1). doi:10.1186/s40537-016-0043-6Ling Shao, Fan Zhu, & Xuelong Li. (2015). Transfer Learning for Visual Categorization: A Survey. IEEE Transactions on Neural Networks and Learning Syste

    Deep Learning Hyperparameter Optimization for Breast Mass Detection in Mammograms

    Full text link
    Accurate breast cancer diagnosis through mammography has the potential to save millions of lives around the world. Deep learning (DL) methods have shown to be very effective for mass detection in mammograms. Additional improvements of current DL models will further improve the effectiveness of these methods. A critical issue in this context is how to pick the right hyperparameters for DL models. In this paper, we present GA-E2E, a new approach for tuning the hyperparameters of DL models for brest cancer detection using Genetic Algorithms (GAs). Our findings reveal that differences in parameter values can considerably alter the area under the curve (AUC), which is used to determine a classifier's performance
    corecore