284 research outputs found

    Probabilistic Robustness Analysis with Aerospace Applications

    Get PDF
    This thesis develops theoretical and computational methods for the robustness analysis of uncertain systems. The considered systems are linearized and depend rationally on random parameters with an associated probability distribution. The uncertainty is tackled by applying a polynomial chaos expansion (PCE), a series expansion for random variables similar to the well-known Fourier series for periodic time signals. We consider the linear perturbations around a system's operating point, i.e., reference trajectory, both from a probabilistic and worst-case point of view. A chief contribution is the polynomial chaos series expansion of uncertain linear systems in linear fractional representation (LFR). This leads to significant computational benefits when analyzing the probabilistic perturbations around a system's reference trajectory. The series expansion of uncertain interconnections in LFR further delivers important theoretical insights. For instance, it is shown that the PCE of rational parameter-dependent linear systems in LFR is equivalent to applying Gaussian quadrature for numerical integration. We further approximate the worst-case performance of uncertain linear systems with respect to quadratic performance metrics. This is achieved by approximately solving the underlying parametric Riccati differential equation after applying a polynomial chaos series expansion. The utility of the proposed probabilistic robustness analysis is demonstrated on the example of an industry-sized autolanding system for an Airbus A330 aircraft. Mean and standard deviation of the stochastic perturbations are quantified efficiently by applying a PCE to a linearization of the system along the nominal approach trajectory. Random uncertainty in the aerodynamic coefficients and mass parameters are considered, as well as atmospheric turbulence and static wind shear. The approximate worst-case analysis is compared with Monte Carlo simulations of the complete nonlinear model. The methods proposed throughout the thesis rapidly provide analysis results in good agreement with the Monte Carlo benchmark, at reduced computational cost

    Behavioral Theory for Stochastic Systems? A Data-driven Journey from Willems to Wiener and Back Again

    Full text link
    The fundamental lemma by Jan C. Willems and co-workers, which is deeply rooted in behavioral systems theory, has become one of the supporting pillars of the recent progress on data-driven control and system analysis. This tutorial-style paper combines recent insights into stochastic and descriptor-system formulations of the lemma to further extend and broaden the formal basis for behavioral theory of stochastic linear systems. We show that series expansions -- in particular Polynomial Chaos Expansions (PCE) of L2L^2-random variables, which date back to Norbert Wiener's seminal work -- enable equivalent behavioral characterizations of linear stochastic systems. Specifically, we prove that under mild assumptions the behavior of the dynamics of the L2L^2-random variables is equivalent to the behavior of the dynamics of the series expansion coefficients and that it entails the behavior composed of sampled realization trajectories. We also illustrate the short-comings of the behavior associated to the time-evolution of the statistical moments. The paper culminates in the formulation of the stochastic fundamental lemma for linear (descriptor) systems, which in turn enables numerically tractable formulations of data-driven stochastic optimal control combining Hankel matrices in realization data (i.e. in measurements) with PCE concepts.Comment: 30 pages, 8 figure

    Advances in state estimation, diagnosis and control of complex systems

    Get PDF
    This dissertation intends to provide theoretical and practical contributions on estimation, diagnosis and control of complex systems, especially in the mathematical form of descriptor systems. The research is motivated by real applications, such as water networks and power systems, which require a control system to provide a proper management able to take into account their specific features and operating limits in presence of uncertainties related to their operation and failures from component malfunctions. Such a control system is expected to provide an optimal operation to obtain efficient and reliable performance. State estimation is an essential tool, which can be used not only for fault diagnosis but also for the controller design. To achieve a satisfactory robust performance, set theory is chosen to build a general framework for descriptor systems subject to uncertainties. Under certain assumptions, these uncertainties are propagated and bounded by deterministic sets that can be explicitly characterized at each iteration step. Moreover, set-invariance characterizations for descriptor systems are also of interest to describe the steady performance, which can also be used for active mode detection. For the controller design for complex systems, new developments of economic model predictive control (EMPC) are studied taking into account the case of underlying periodic behaviors. The EMPC controller is designed to be recursively feasible even with sudden changes in the economic cost function and the closed-loop convergence is guaranteed. Besides, a robust technique is plugged into the EMPC controller design to maintain these closed-loop properties in presence of uncertainties. Engineering applications modeled as descriptor systems are presented to illustrate these control strategies. From the real applications, some additional difficulties are solved, such as using a two-layer control strategy to avoid binary variables in real-time optimizations and using nonlinear constraint relaxation to deal with nonlinear algebraic equations in the descriptor model. Furthermore, the fault-tolerant capability is also included in the controller design for descriptor systems by means of the designed virtual actuator and virtual sensor together with an observer-based delayed controller.Esta tesis propone contribuciones de carácter teórico y aplicado para la estimación del estado, el diagnóstico y el control óptimo de sistemas dinámicos complejos en particular, para los sistemas descriptores, incluyendo la capacidad de tolerancia a fallos. La motivación de la tesis proviene de aplicaciones reales, como redes de agua y sistemas de energía, cuya naturaleza crítica requiere necesariamente un sistema de control para una gestión capaz de tener en cuenta sus características específicas y límites operativos en presencia de incertidumbres relacionadas con su funcionamiento, así como fallos de funcionamiento de los componentes. El objetivo es conseguir controladores que mejoren tanto la eficiencia como la fiabilidad de dichos sistemas. La estimación del estado es una herramienta esencial que puede usarse no solo para el diagnóstico de fallos sino también para el diseño del control. Con este fin, se ha decidido utilizar metodologías intervalares, o basadas en conjuntos, para construir un marco general para los sistemas de descriptores sujetos a incertidumbres desconocidas pero acotadas. Estas incertidumbres se propagan y delimitan mediante conjuntos que se pueden caracterizar explícitamente en cada instante. Por otra parte, también se proponen caracterizaciones basadas en conjuntos invariantes para sistemas de descriptores que permiten describir comportamientos estacionarios y resultan útiles para la detección de modos activos. Se estudian también nuevos desarrollos del control predictivo económico basado en modelos (EMPC) para tener en cuenta posibles comportamientos periódicos en la variación de parámetros o en las perturbaciones que afectan a estos sistemas. Además, se demuestra que el control EMPC propuesto garantiza la factibilidad recursiva, incluso frente a cambios repentinos en la función de coste económico y se garantiza la convergencia en lazo cerrado. Por otra parte, se utilizan técnicas de control robusto pata garantizar que las estrategias de control predictivo económico mantengan las prestaciones en lazo cerrado, incluso en presencia de incertidumbre. Los desarrollos de la tesis se ilustran con casos de estudio realistas. Para algunas de aplicaciones reales, se resuelven dificultades adicionales, como el uso de una estrategia de control de dos niveles para evitar incluir variables binarias en la optimización y el uso de la relajación de restricciones no lineales para tratar las ecuaciones algebraicas no lineales en el modelo descriptor en las redes de agua. Finalmente, se incluye también una contribución al diseño de estrategias de control con tolerancia a fallos para sistemas descriptores

    Optimal control and approximations

    Get PDF

    Optimal control and approximations

    Get PDF

    Analysis of Embedded Controllers Subject to Computational Overruns

    Get PDF
    Microcontrollers have become an integral part of modern everyday embedded systems, such as smart bikes, cars, and drones. Typically, microcontrollers operate under real-time constraints, which require the timely execution of programs on the resource-constrained hardware. As embedded systems are becoming increasingly more complex, microcontrollers run the risk of violating their timing constraints, i.e., overrunning the program deadlines. Breaking these constraints can cause severe damage to both the embedded system and the humans interacting with the device. Therefore, it is crucial to analyse embedded systems properly to ensure that they do not pose any significant danger if the microcontroller overruns a few deadlines.However, there are very few tools available for assessing the safety and performance of embedded control systems when considering the implementation of the microcontroller. This thesis aims to fill this gap in the literature by presenting five papers on the analysis of embedded controllers subject to computational overruns. Details about the real-time operating system's implementation are included into the analysis, such as what happens to the controller's internal state representation when the timing constraints are violated. The contribution includes theoretical and computational tools for analysing the embedded system's stability, performance, and real-time properties.The embedded controller is analysed under three different types of timing violations: blackout events (when no control computation is completed during long periods), weakly-hard constraints (when the number of deadline overruns is constrained over a window), and stochastic overruns (when violations of timing constraints are governed by a probabilistic process). These scenarios are combined with different implementation policies to reduce the gap between the analysis and its practical applicability. The analyses are further validated with a comprehensive experimental campaign performed on both a set of physical processes and multiple simulations.In conclusion, the findings of this thesis reveal that the effect deadline overruns have on the embedded system heavily depends the implementation details and the system's dynamics. Additionally, the stability analysis of embedded controllers subject to deadline overruns is typically conservative, implying that additional insights can be gained by also analysing the system's performance

    Stochastic and Optimal Distributed Control for Energy Optimization and Spatially Invariant Systems

    Get PDF
    Improving energy efficiency and grid responsiveness of buildings requires sensing, computing and communication to enable stochastic decision-making and distributed operations. Optimal control synthesis plays a significant role in dealing with the complexity and uncertainty associated with the energy systems. The dissertation studies general area of complex networked systems that consist of interconnected components and usually operate in uncertain environments. Specifically, the contents of this dissertation include tools using stochastic and optimal distributed control to overcome these challenges and improve the sustainability of electric energy systems. The first tool is developed as a unifying stochastic control approach for improving energy efficiency while meeting probabilistic constraints. This algorithm is applied to demonstrate energy efficiency improvement in buildings and improving operational efficiency of virtualized web servers, respectively. Although all the optimization in this technique is in the form of convex optimization, it heavily relies on semidefinite programming (SP). A generic SP solver can handle only up to hundreds of variables. This being said, for a large scale system, the existing off-the-shelf algorithms may not be an appropriate tool for optimal control. Therefore, in the sequel I will exploit optimization in a distributed way. The second tool is itself a concrete study which is optimal distributed control for spatially invariant systems. Spatially invariance means the dynamics of the system do not vary as we translate along some spatial axis. The optimal H2 [H-2] decentralized control problem is solved by computing an orthogonal projection on a class of Youla parameters with a decentralized structure. Optimal H∞ [H-infinity] performance is posed as a distance minimization in a general L∞ [L-infinity] space from a vector function to a subspace with a mixed L∞ and H∞ space structure. In this framework, the dual and pre-dual formulations lead to finite dimensional convex optimizations which approximate the optimal solution within desired accuracy. Furthermore, a mixed L2 [L-2] /H∞ synthesis problem for spatially invariant systems as trade-offs between transient performance and robustness. Finally, we pursue to deal with a more general networked system, i.e. the Non-Markovian decentralized stochastic control problem, using stochastic maximum principle via Malliavin Calculus
    • …
    corecore