36,094 research outputs found

    Probabilistic solution of random homogeneous linear second-order difference equations

    Full text link
    This paper deals with the computation of the first probability density function of the solution of random homogeneous linear second-order difference equations by the Random Variable Transformation method. This approach allows us to generalize the classical solution obtained in the deterministic scenario. Several illustrative examples are provided.This work was sponsored by "Ministerio de Economa y Competitividad" of the Spanish Government in the frame of the Project with Reference TRA2012-36932.Casabán Bartual, MC.; Cortés López, JC.; Romero Bauset, JV.; Roselló Ferragud, MD. (2014). Probabilistic solution of random homogeneous linear second-order difference equations. Applied Mathematics Letters. 34:27-32. https://doi.org/10.1016/j.aml.2014.03.010S27323

    Solving random homogeneous linear second-order differential equations: a full probabilistic description

    Full text link
    [EN] In this paper a complete probabilistic description for the solution of random homogeneous linear second-order differential equations via the computation of its two first probability density functions is given. As a consequence, all unidimensional and two-dimensional statistical moments can be straightforwardly determined, in particular, mean, variance and covariance functions, as well as the first-order conditional law. With the aim of providing more generality, in a first step, all involved input parameters are assumed to be statistically dependent random variables having an arbitrary joint probability density function. Second, the particular case that just initial conditions are random variables is also analysed. Both problems have common and distinctive feature which are highlighted in our analysis. The study is based on random variable transformation method. As a consequence of our study, the well-known deterministic results are nicely generalized. Several illustrative examples are included.This work has been partially supported by the Spanish M. C. Y. T. Grant MTM2013-41765-P.Casabán, M.; Cortés, J.; Romero, J.; Roselló, M. (2016). Solving random homogeneous linear second-order differential equations: a full probabilistic description. Mediterranean Journal of Mathematics. 13(6):3817-3836. https://doi.org/10.1007/s00009-016-0716-6S38173836136Øksendal B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, Berlin (2007)Soong T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York (1973)Neckel, T., Rupp, F.: Random Differential Equations in Scientific Computing. Versita, London (2013)Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterr. J. Math. 1–18 (2014). doi: 10.1007/s00009-014-0452-8Villafuerte, L., Chen-Charpentier, B.M.: A random differential transform method: theory and applications. Appl. Math. Lett. 25(10), 1490–1494 (2012). doi: 10.1016/j.aml.2011.12.033Licea, J.A., Villafuerte, L., Chen-Charpentier, B.M.: Analytic and numerical solutions of a Riccati differential equation with random coefficients. J. Comput. Appl. Math. 239, 208–219 (2013). doi: 10.1016/j.cam.2012.09.040Casabán, M.C., Cortés, J.C., Romero, J.V., Roselló, M.D.: Probabilistic solution of random homogeneous linear second-order difference equations. Appl. Math. Lett. 34, 27–32 (2014). doi: 10.1016/j.aml.2014.03.010Santos, L.T., Dorini, F.A., Cunha, M.C.C.: The probability density function to the random linear transport equation. Appl. Math. Comput. 216 (5), 1524–1530 (2010). doi: 10.16/j.amc.2010.03.001El-Tawil, M., El-Tahan, W., Hussein, A.: Using FEM-RVT technique for solving a randomly excited ordinary differential equation with a random operator. Appl. Math. Comput. 187(2), 856–867 (2007). doi: 10.1016/j.amc.2006.08.164Hussein, A., Selim, M.M.: Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Appl. Math. Comput. 218(13), 7193–7203 (2012). doi: 10.1016/j.amc.2011.12.088Casabán, M.C., Cortés, J.C., Romero, J.V., Roselló, M.D.: Probabilistic solution of random SI-type epidemiological models using the random variable transformation technique. Commun. Nonlinear Sci. Numer. Simul. 24(1–3), 86–97 (2015). doi: 10.1016/j.cnsns.2014.12.016Casabán, M.C., Cortés, J.C., Romero, J.V., Roselló, M.D.: Determining the first probability density function of linear random initial value problems by the random variable transformation (RVT) technique: a comprehensive study. In: Abstract and Applied Analysis 2014-ID248512, pp. 1–25 (2014). doi: 10.1155/2013/248512Casabán, M.C., Cortés, J.C., Navarro-Quiles, A., Romero, J.V., Roselló, M.D., Villanueva, R.J.: A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Commun. Nonlinear Sci. Numer. Simul. 32, 199–210 (2016). doi: 10.1016/j.cnsns.2015.08.009El-Wakil, S.A., Sallah, M., El-Hanbaly, A.M.: Random variable transformation for generalized stochastic radiative transfer in finite participating slab media. Phys. A 435 66–79 (2015). doi: 10.1016/j.physa.2015.04.033Dorini, F.A., Cunha, M.C.C.: On the linear advection equation subject to random fields velocity. Math. Comput. Simul. 82, 679–690 (2011). doi: 10.16/j.matcom.2011.10.008Dhople, S.V., Domínguez-García, D.: A parametric uncertainty analysis method for Markov reliability and reward models. IEEE Trans. Reliab. 61(3), 634–648 (2012). doi: 10.1109/TR.2012.2208299Williams, M.M.R.: Polynomial chaos functions and stochastic differential equations. Ann. Nucl. Energy 33(9), 774–785 (2006). doi: 10.1016/j.anucene.2006.04.005Chen-Charpentier, B.M., Stanescu, D.: Epidemic models with random coefficients. Math. Comput. Model. 52(7/8), 1004–1010 (2009). doi: 10.1016/j.mcm.2010.01.014Papoulis A.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, New York (1991

    Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties

    Get PDF
    [EN] In this paper we study random non-autonomous second order linear differential equations by taking advantage of the powerful theory of random difference equations. The coefficients are assumed to be stochastic processes, and the initial conditions are random variables both defined in a common underlying complete probability space. Under appropriate assumptions established on the data stochastic processes and on the random initial conditions, and using key results on difference equations, we prove the existence of an analytic stochastic process solution in the random mean square sense. Truncating the random series that defines the solution process, we are able to approximate the main statistical properties of the solution, such as the expectation and the variance. We also obtain error a priori bounds to construct reliable approximations of both statistical moments. We include a set of numerical examples to illustrate the main theoretical results established throughout the paper. We finish with an example where our findings are combined with Monte Carlo simulations to model uncertainty using real data.This work has been supported by the Spanish Ministerio de Economia y Competitividad grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigacion y Desarrollo (PAID), Universitat Politecnica de Valencia.Calatayud-Gregori, J.; Cortés, J.; Jornet-Sanz, M.; Villafuerte, L. (2018). Random non-autonomous second order linear differential equations: mean square analytic solutions and their statistical properties. Advances in Difference Equations. (3):1-29. https://doi.org/10.1186/s13662-018-1848-8S1293Apostol, T.M.: Mathematical Analysis, 2nd edn. Pearson, New York (1976)Boyce, W.E.: Probabilistic Methods in Applied Mathematics I. Academic Press, New York (1968)Calbo, G., Cortés, J.C., Jódar, L.: Random Hermite differential equations: mean square power series solutions and statistical properties. Appl. Math. Comput. 218(7), 3654–3666 (2011)Calbo, G., Cortés, J.C., Jódar, L., Villafuerte, L.: Solving the random Legendre differential equation: mean square power series solution and its statistical functions. Comput. Math. Appl. 61(9), 2782–2792 (2011)Casabán, M.C., Cortés, J.C., Navarro-Quiles, A., Romero, J.V., Roselló, M.D., Villanueva, R.J.: Computing probabilistic solutions of the Bernoulli random differential equation. J. Comput. Appl. Math. 309, 396–407 (2017)Casabán, M.C., Cortés, J.C., Romero, J.V., Roselló, M.D.: Solving random homogeneous linear second-order differential equations: a full probabilistic description. Mediterr. J. Math. 13(6), 3817–3836 (2016)Cortés, J.C., Jódar, L., Camacho, J., Villafuerte, L.: Random Airy type differential equations: mean square exact and numerical solutions. Comput. Math. Appl. 60(5), 1237–1244 (2010)Cortés, J.C., Jódar, L., Company, R., Villafuerte, L.: Laguerre random polynomials: definition, differential and statistical properties. Util. Math. 98, 283–295 (2015)Cortés, J.C., Jódar, L., Villafuerte, L.: Random linear-quadratic mathematical models: computing explicit solutions and applications. Math. Comput. Simul. 79(7), 2076–2090 (2009)Cortés, J.C., Jódar, L., Villafuerte, L.: Mean square solution of Bessel differential equation with uncertainties. J. Comput. Appl. Math. 309(1), 383–395 (2017)Cortés, J.C., Sevilla-Peris, P., Jódar, L.: Analytic-numerical approximating processes of diffusion equation with data uncertainty. Comput. Math. Appl. 49(7–8), 1255–1266 (2005)Díaz-Infante, S., Jerez, S.: Convergence and asymptotic stability of the explicit Steklov method for stochastic differential equations. J. Comput. Appl. Math. 291(1), 36–47 (2016)Dorini, F., Cunha, M.: Statistical moments of the random linear transport equation. J. Comput. Phys. 227(19), 8541–8550 (2008)Dorini, F.A., Cecconello, M.S., Dorini, M.B.: On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density. Commun. Nonlinear Sci. Numer. Simul. 33, 160–173 (2016)Golmankhaneh, A.K., Porghoveh, N.A., Baleanu, D.: Mean square solutions of second-order random differential equations by using homotopy analysis method. Rom. Rep. Phys. 65(2), 350–362 (2013)Grimmett, G.R., Stirzaker, D.R.: Probability and Random Processes. Clarendon Press, Oxford (2000)Henderson, D., Plaschko, P.: Stochastic Differential Equations in Science and Engineering. Cambridge Texts in Applied Mathematics. World Scientific, Singapore (2006)Hussein, A., Selim, M.M.: A developed solution of the stochastic Milne problem using probabilistic transformations. Appl. Math. Comput. 216(10), 2910–2919 (2009)Hussein, A., Selim, M.M.: Solution of the stochastic transport equation of neutral particles with anisotropic scattering using RVT technique. Appl. Math. Comput. 213(1), 250–261 (2009)Hussein, A., Selim, M.M.: Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Appl. Math. Comput. 218(13), 7193–7203 (2012)Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Numerical solution of stochastic differential equations by second order Runge–Kutta methods. Math. Comput. Model. 53(9–10), 1910–1920 (2011)Khodabin, M., Rostami, M.: Mean square numerical solution of stochastic differential equations by fourth order Runge–Kutta method and its application in the electric circuits with noise. Adv. Differ. Equ. 2015, 62 (2015)Khudair, A.K., Ameen, A.A., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using Adomian decomposition method. Appl. Math. Sci. 51(5), 2521–2535 (2011)Khudair, A.K., Haddad, S.A.M., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using the differential transformation method. Open J. Appl. Sci. 6, 287–297 (2016)Lesaffre, E., Lawson, A.B.: Bayesian Biostatistics. Statistics in Practice. Wiley, New York (2012)Li, X., Fu, X.: Stability analysis of stochastic functional differential equations with infinite delay and its application to recurrent neural networks. J. Comput. Appl. Math. 234(2), 407–417 (2010)Licea, J.A., Villafuerte, L., Chen-Charpentier, B.M.: Analytic and numerical solutions of a Riccati differential equation with random coefficients. J. Comput. Appl. Math. 309(1), 208–219 (2013)Liu, S., Debbouche, A., Wang, J.: On the iterative learning control for stochastic impulsive differential equations with randomly varying trial lengths. J. Comput. Appl. Math. 312, 47–57 (2017)Loève, M.: Probability Theory. Vol. I. Springer, Mineola (1977)Lord, G.J., Powell, C.E., Shardlow, T.: An Introduction to Computational Stochastic PDEs. Cambridge Texts in Applied Mathematics. Dover, New York (2014)Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterr. J. Math. 12(3), 1123–1140 (2015)Rencher, A.C., Schaalje, G.B.: Linear Models in Statistics, 2nd edn. Wiley, New York (2008)Santos, L.T., Dorini, F.A., Cunha, M.C.C.: The probability density function to the random linear transport equation. Appl. Math. Comput. 216(5), 1524–1530 (2010)Seber, G.A.F., Wild, C.J.: Nonlinear Regression. Cambridge Texts in Applied Mathematics. Wiley, New York (2003)Smith, R.C.: Uncertainty Quantification: Theory, Implementation, and Applications. SIAM, Philadelphia (2014)Soheili, A.R., Toutounian, F., Soleymani, F.: A fast convergent numerical method for matrix sign function with application in SDEs (Stochastic Differential Equations). J. Comput. Appl. Math. 282, 167–178 (2015)Soong, T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York (1973)Villafuerte, L., Braumann, C.A., Cortés, J.C., Jódar, L.: Random differential operational calculus: theory and applications. Comput. Math. Appl. 59(1), 115–125 (2010)Xiu, D.: Numerical Methods for Stochastic Computations. A Spectral Method Approach. Cambridge Texts in Applied Mathematics. Princeton University Press, New York (2010

    A probabilistic analysis of a Beverton-Holt type discrete model: Theoretical and computing analysis

    Full text link
    "This is the peer reviewed version of the following article: Cortés, J-C, Navarro-Quiles, A, Romero, J-V, Roselló, M-D. A probabilistic analysis of a Beverton-Holt type discrete model: Theoretical and computing analysis. Comp and Math Methods. 2019; 1:e1013, which has been published in final form at https://doi.org/10.1002/cmm4.1013. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] In this paper a randomized version of the Beverton-Holt type discrete model is proposed. Its solution stochastic process and the random steady state are determined. Its first probability density function and second probability density function are obtained by means of the random variable transformation method, providing a full probabilistic description of the solution. Finally, several numerical examples are shown.This work has been partially supported by the Ministerio de Economía, Industria y Competitividad under grant MTM2017-89664-P. The authors express their deepest thanks and respect to the editors and reviewers for their valuable comments.Cortés, J.; Navarro-Quiles, A.; Romero, J.; Roselló, M. (2019). A probabilistic analysis of a Beverton-Holt type discrete model: Theoretical and computing analysis. Computational and Mathematical Methods. 1(1):1-12. https://doi.org/10.1002/cmm4.1013S11211Kwasnicki, W. (2013). Logistic growth of the global economy and competitiveness of nations. Technological Forecasting and Social Change, 80(1), 50-76. doi:10.1016/j.techfore.2012.07.007De la Sen, M. (2008). The generalized Beverton–Holt equation and the control of populations. Applied Mathematical Modelling, 32(11), 2312-2328. doi:10.1016/j.apm.2007.09.007Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2018). Computing the probability density function of non-autonomous first-order linear homogeneous differential equations with uncertainty. Journal of Computational and Applied Mathematics, 337, 190-208. doi:10.1016/j.cam.2018.01.015Casabán, M.-C., Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., Roselló, M.-D., & Villanueva, R.-J. (2017). Computing probabilistic solutions of the Bernoulli random differential equation. Journal of Computational and Applied Mathematics, 309, 396-407. doi:10.1016/j.cam.2016.02.034Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2017). Randomizing the parameters of a Markov chain to model the stroke disease: A technical generalization of established computational methodologies towards improving real applications. Journal of Computational and Applied Mathematics, 324, 225-240. doi:10.1016/j.cam.2017.04.040Cortés, J.-C., Navarro-Quiles, A., Romero, J.-V., & Roselló, M.-D. (2017). Full solution of random autonomous first-order linear systems of difference equations. Application to construct random phase portrait for planar systems. Applied Mathematics Letters, 68, 150-156. doi:10.1016/j.aml.2016.12.01

    Aggregation and Control of Populations of Thermostatically Controlled Loads by Formal Abstractions

    Full text link
    This work discusses a two-step procedure, based on formal abstractions, to generate a finite-space stochastic dynamical model as an aggregation of the continuous temperature dynamics of a homogeneous population of Thermostatically Controlled Loads (TCL). The temperature of a single TCL is described by a stochastic difference equation and the TCL status (ON, OFF) by a deterministic switching mechanism. The procedure is formal as it allows the exact quantification of the error introduced by the abstraction -- as such it builds and improves on a known, earlier approximation technique in the literature. Further, the contribution discusses the extension to the case of a heterogeneous population of TCL by means of two approaches resulting in the notion of approximate abstractions. It moreover investigates the problem of global (population-level) regulation and load balancing for the case of TCL that are dependent on a control input. The procedure is tested on a case study and benchmarked against the mentioned alternative approach in the literature.Comment: 40 pages, 21 figures; the paper generalizes the result of conference publication: S. Esmaeil Zadeh Soudjani and A. Abate, "Aggregation of Thermostatically Controlled Loads by Formal Abstractions," Proceedings of the European Control Conference 2013, pp. 4232-4237. version 2: added references for section

    On the Complexity of Solving Quadratic Boolean Systems

    Full text link
    A fundamental problem in computer science is to find all the common zeroes of mm quadratic polynomials in nn unknowns over F2\mathbb{F}_2. The cryptanalysis of several modern ciphers reduces to this problem. Up to now, the best complexity bound was reached by an exhaustive search in 4log2n2n4\log_2 n\,2^n operations. We give an algorithm that reduces the problem to a combination of exhaustive search and sparse linear algebra. This algorithm has several variants depending on the method used for the linear algebra step. Under precise algebraic assumptions on the input system, we show that the deterministic variant of our algorithm has complexity bounded by O(20.841n)O(2^{0.841n}) when m=nm=n, while a probabilistic variant of the Las Vegas type has expected complexity O(20.792n)O(2^{0.792n}). Experiments on random systems show that the algebraic assumptions are satisfied with probability very close to~1. We also give a rough estimate for the actual threshold between our method and exhaustive search, which is as low as~200, and thus very relevant for cryptographic applications.Comment: 25 page

    Low Complexity Algorithms for Linear Recurrences

    Get PDF
    We consider two kinds of problems: the computation of polynomial and rational solutions of linear recurrences with coefficients that are polynomials with integer coefficients; indefinite and definite summation of sequences that are hypergeometric over the rational numbers. The algorithms for these tasks all involve as an intermediate quantity an integer NN (dispersion or root of an indicial polynomial) that is potentially exponential in the bit size of their input. Previous algorithms have a bit complexity that is at least quadratic in NN. We revisit them and propose variants that exploit the structure of solutions and avoid expanding polynomials of degree NN. We give two algorithms: a probabilistic one that detects the existence or absence of nonzero polynomial and rational solutions in O(Nlog2N)O(\sqrt{N}\log^{2}N) bit operations; a deterministic one that computes a compact representation of the solution in O(Nlog3N)O(N\log^{3}N) bit operations. Similar speed-ups are obtained in indefinite and definite hypergeometric summation. We describe the results of an implementation.Comment: This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistributio
    corecore