149 research outputs found

    Location models in the public sector

    Get PDF
    The past four decades have witnessed an explosive growth in the field of networkbased facility location modeling. This is not at all surprising since location policy is one of the most profitable areas of applied systems analysis in regional science and ample theoretical and applied challenges are offered. Location-allocation models seek the location of facilities and/or services (e.g., schools, hospitals, and warehouses) so as to optimize one or several objectives generally related to the efficiency of the system or to the allocation of resources. This paper concerns the location of facilities or services in discrete space or networks, that are related to the public sector, such as emergency services (ambulances, fire stations, and police units), school systems and postal facilities. The paper is structured as follows: first, we will focus on public facility location models that use some type of coverage criterion, with special emphasis in emergency services. The second section will examine models based on the P-Median problem and some of the issues faced by planners when implementing this formulation in real world locational decisions. Finally, the last section will examine new trends in public sector facility location modeling.Location analysis, public facilities, covering models

    OR models in urban service facility location : a critical review of applications and future developments

    Get PDF
    [EN] Facility location models are well established in various application areas with more than a century of history in academia. Since the 1970s the trend has been shifting from manufacturing to service industries. Due to their nature, service industries are frequently located in or near urban areas that results in additional assumptions, objectives and constraints other than those in more traditional manufacturing location models. This survey focuses on the location of service facilities in urban areas. We studied 110 research papers across different journals and disciplines. We have analyzed these papers on two levels. On the first, we take an Operations Research perspective to investigate the papers in terms of types of decisions, location space, main assumptions, input parameters, objective functions and constraints. On the second level, we compare and contrast the papers in each of these applications categories: (a) Waste management systems (WMS), (b) Large-scale disaster (LSD), (c) Small-scale emergency (SSE), (d) General service and infrastructure (GSI), (e) Non-emergency healthcare systems (NEH) and (f) Transportation systems and their infrastructure (TSI). Each of these categories is critically analyzed in terms of application, assumptions, decision variables, input parameters, constraints, objective functions and solution techniques. Gaps, research opportunities and trends are identified within each category. Finally, some general lessons learned based on the practicality of the models is synthesized to suggest avenues of future research.Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD - Optimization of Scheduling Problems in Container Yards (No. DPI2015-65895-R) financed by FEDER funds.Farahani, RZ.; Fallah, S.; Ruiz García, R.; Hosseini, S.; Asgari, N. (2019). OR Models in Urban Service Facility Location: A Critical Review of Applications and Future Developments. European Journal of Operational Research. 276(1):1-27. https://doi.org/10.1016/j.ejor.2018.07.036S127276

    Heterogeneous Facility Location with Limited Resources

    Get PDF
    We initiate the study of the heterogeneous facility location problem with limited resources. We mainly focus on the fundamental case where a set of agents are positioned in the line segment [0,1] and have approval preferences over two available facilities. A mechanism takes as input the positions and the preferences of the agents, and chooses to locate a single facility based on this information. We study mechanisms that aim to maximize the social welfare (the total utility the agents derive from facilities they approve), under the constraint of incentivizing the agents to truthfully report their positions and preferences. We consider three different settings depending on the level of agent-related information that is public or private. For each setting, we design deterministic and randomized strategyproof mechanisms that achieve a good approximation of the optimal social welfare, and complement these with nearly-tight impossibility results

    Robustness in facility location

    Get PDF
    Facility location concerns the placement of facilities, for various objectives, by use of mathematical models and solution procedures. Almost all facility location models that can be found in literature are based on minimizing costs or maximizing cover, to cover as much demand as possible. These models are quite efficient for finding an optimal location for a new facility for a particular data set, which is considered to be constant and known in advance. In a real world situation, input data like demand and travelling costs are not fixed, nor known in advance. This uncertainty and uncontrollability can lead to unacceptable losses or even bankruptcy. A way of dealing with these factors is robustness modelling. A robust facility location model aims to locate a facility that stays within predefined limits for all expectable circumstances as good as possible. The deviation robustness concept is used as basis to develop a new competitive deviation robustness model. The competition is modelled with a Huff based model, which calculates the market share of the new facility. Robustness in this model is defined as the ability of a facility location to capture a minimum market share, despite variations in demand. A test case is developed by which algorithms can be tested on their ability to solve robust facility location models. Four stochastic optimization algorithms are considered from which Simulated Annealing turned out to be the most appropriate. The test case is slightly modified for a competitive market situation. With the Simulated Annealing algorithm, the developed competitive deviation model is solved, for three considered norms of deviation. At the end, also a grid search is performed to illustrate the landscape of the objective function of the competitive deviation model. The model appears to be multimodal and seems to be challenging for further research

    Mechanism Design for Facility Location Problems: A Survey

    Get PDF
    The study of approximate mechanism design for facility location problems has been in the center of research at the intersection of artificial intelligence and economics for the last decades, largely due to its practical importance in various domains, such as social planning and clustering. At a high level, the goal is to design mechanisms to select a set of locations on which to build a set of facilities, aiming to optimize some social objective and ensure desirable properties based on the preferences of strategic agents, who might have incentives to misreport their private information such as their locations. This paper presents a comprehensive survey of the significant progress that has been made since the introduction of the problem, highlighting the different variants and methodologies, as well as the most interesting directions for future research

    Proportional Fairness and Strategic Behaviour in Facility Location Problems

    Full text link
    The one-dimensional facility location problem readily generalizes to many real world problems, including social choice, project funding, and the geographic placement of facilities intended to serve a set of agents. In these problems, each agent has a preferred point along a line or interval, which could denote their ideal preference, preferred project funding, or location. Thus each agent wishes the facility to be as close to their preferred point as possible. We are tasked with designing a mechanism which takes in these preferred points as input, and outputs an ideal location to build the facility along the line or interval domain. In addition to minimizing the distance between the facility and the agents, we may seek a facility placement which is fair for the agents. In particular, this thesis focusses on the notion of proportional fairness, in which endogenous groups of agents with similar or identical preferences have a distance guarantee from the facility that is proportional to the size of the group. We also seek mechanisms that are strategyproof, in that no agent can improve their distance from the facility by lying about their location. We consider both deterministic and randomized mechanisms, in both the classic and obnoxious facility location settings. The obnoxious setting differs from the classic setting in that agents wish to be far from the facility rather than close to it. For these settings, we formalize a hierarchy of proportional fairness axioms, and where possible, characterize strategyproof mechanisms which satisfy these axioms. In the obnoxious setting where this is not possible, we consider the welfare-optimal mechanisms which satisfy these axioms, and quantify the extent at which the system efficiency is compromised by misreporting agents. We also investigate, in the classic setting, the nature of misreporting agents under a family of proportionally fair mechanisms which are not necessarily strategyproof. These results are supplemented with tight approximation ratio and price of fairness bounds which provide further insight into the compromise between proportional fairness and efficiency in the facility location problem. Finally, we prove basic existence results concerning possible extensions to our settings

    Problemas de localização-distribuição de serviços semiobnóxios: aproximações e apoio à decisão

    Get PDF
    Doutoramento em Gestão IndustrialA presente tese resulta de um trabalho de investigação cujo objectivo se centrou no problema de localização-distribuição (PLD) que pretende abordar, de forma integrada, duas actividades logísticas intimamente relacionadas: a localização de equipamentos e a distribuição de produtos. O PLD, nomeadamente a sua modelação matemática, tem sido estudado na literatura, dando origem a diversas aproximações que resultam de diferentes cenários reais. Importa portanto agrupar as diferentes variantes por forma a facilitar e potenciar a sua investigação. Após fazer uma revisão e propor uma taxonomia dos modelos de localização-distribuição, este trabalho foca-se na resolução de alguns modelos considerados como mais representativos. É feita assim a análise de dois dos PLDs mais básicos (os problema capacitados com procura nos nós e nos arcos), sendo apresentadas, para ambos, propostas de resolução. Posteriormente, é abordada a localização-distribuição de serviços semiobnóxios. Este tipo de serviços, ainda que seja necessário e indispensável para o público em geral, dada a sua natureza, exerce um efeito desagradável sobre as comunidades contíguas. Assim, aos critérios tipicamente utilizados na tomada de decisão sobre a localização destes serviços (habitualmente a minimização de custo) é necessário adicionar preocupações que reflectem a manutenção da qualidade de vida das regiões que sofrem o impacto do resultado da referida decisão. A abordagem da localização-distribuição de serviços semiobnóxios requer portanto uma análise multi-objectivo. Esta análise pode ser feita com recurso a dois métodos distintos: não interactivos e interactivos. Ambos são abordados nesta tese, com novas propostas, sendo o método interactivo proposto aplicável a outros problemas de programação inteira mista multi-objectivo. Por último, é desenvolvida uma ferramenta de apoio à decisão para os problemas abordados nesta tese, sendo apresentada a metodologia adoptada e as suas principais funcionalidades. A ferramenta desenvolvida tem grandes preocupações com a interface de utilizador, visto ser direccionada para decisores que tipicamente não têm conhecimentos sobre os modelos matemáticos subjacentes a este tipo de problemas.This thesis main objective is to address the location-routing problem (LRP) which intends to tackle, using an integrated approach, two highly related logistics activities: the location of facilities and the distribution of materials. The LRP, namely its mathematical formulation, has been studied in the literature, and several approaches have emerged, corresponding to different real-world scenarios. Therefore, it is important to identify and group the different LRP variants, in order to segment current research and foster future studies. After presenting a review and a taxonomy of location-routing models, the following research focuses on solving some of its variants. Thus, a study of two of the most basic LRPs (capacitated problems with demand either on the nodes or on the arcs) is performed, and new approaches are presented. Afterwards, the location-routing of semi-obnoxious facilities is addressed. These are facilities that, although providing useful and indispensible services, given their nature, bring about an undesirable effect to adjacent communities. Consequently, to the usual objectives when considering their location (cost minimization), new ones must be added that are able to reflect concerns regarding the quality of life of the communities impacted by the outcome of these decisions. The location-routing of semi-obnoxious facilities therefore requires to be analysed using multi-objective approaches, which can be of two types: noninteractive or interactive. Both are discussed and new methods proposed in this thesis; the proposed interactive method is suitable to other multi-objective mixed integer programming problems. Finally, a newly developed decision-support tool to address the LRP is presented (being the adopted methodology discussed, and its main functionalities shown). This tool has great concerns regarding the user interface, as it is directed at decision makers who typically don’t have specific knowledge of the underlying models of this type of problems

    Public Facility Location: Issues and Approaches

    Get PDF
    The papers collected in this issue were presented at the Task Force Meeting on Public Facility Location, held at IIASA in June 1980. The meeting was an important occasion for scientists with different backgrounds and nationalities to compare and discuss differences and similarities among their approaches to location problems. Unification and reconciliation of existing theories and methods was one of the leading themes of the meeting, and the papers collected here are part of the raw material to be used as a starting point towards this aim. The papers themselves provide a wide spectrum of approaches to both technical and substantive problems, for example, the way space is treated (continuously in Beckmann, in Mayhew, and in Thisse et al, discretely in all the others), the way customers are assigned to facilities (by behavioral models in Ermoliev and Leonardi, in Sheppard, and in Wilson, by normative rules in many others), the way the objective function is defined (ranging from total cost, to total profit, total expected utility for customers, accessibility, minimax distance, maximum covering, to a multi-objective treatment of all of them as in Revelle et al. There is indeed room for discussion, in order to find both similarities and weaknesses in different approaches. A general weakness of the current state of the art of location modeling may also be recognized: its general lack of realism relative to the political and institutional issues implied by locational decisions. This criticism, developed by Lea, might be used both as a concluding remark and as a proposal for new challenging research themes to scholars working in the field of location theory

    Hazardous Materials Transportation: a Literature Review and an Annotated Bibliography

    Get PDF
    The hazardous materials transportation poses risks to life, health, property, and the environment due to the possibility of an unintentional release. We present a bibliographic survey on this argument paying particular attention to the road transportation. We attempt to encompass both theoretical and application oriented works. Research on this topic is spread over the broad spectrum of computer science and the literature has an operations research and quantitative risk assessment focus. The models present in the literature vary from simple risk equations to set of differential equations. In discussing the literature, we present and compare the underlying assumptions, the model specifications and the derived results. We use the previous perspectives to critically cluster the papers in the literature into a classification scheme
    corecore