7,474 research outputs found

    INTEGRATED DETERMINISTIC AND PROBABILISTIC SAFETY ANALYSIS: CONCEPTS, CHALLENGES, RESEARCH DIRECTIONS

    No full text
    International audienceIntegrated deterministic and probabilistic safety analysis (IDPSA) is conceived as a way to analyze the evolution of accident scenarios in complex dynamic systems, like nuclear, aerospace and process ones, accounting for the mutual interactions between the failure and recovery of system components, the evolving physical processes, the control and operator actions, the software and firmware. In spite of the potential offered by IDPSA, several challenges need to be effectively addressed for its development and practical deployment. In this paper, we give an overview of these and discuss the related implications in terms of research perspectives

    Models for the Reliability Analysis of Digital Instrumentation and Control Systems for Nuclear Power Plants

    Get PDF
    The objective of this chapter is to discuss two approaches for reliability analysis of digital instrumentation and control systems in nuclear power plants taking into account the regulatory side. Dynamic Flowgraph Methodology (DFM) and Markov/Cell-to-Cell Mapping Technique (CCMT) are discussed and case studies developed are presented. These case studies involve simplified control systems for a steam generator and a pressurizer of a Pressurized Water Reactor (PWR) plant for the purpose of evaluating each method. Advantages and limitations of each approach are addressed. For the DFM approach, three concerns in the literature are addressed: modeling of the system itself, incorporation of the methodology results into existing Probabilistic Safety Assessments (PSA), and identification of software failures. The Markov/CCMT, which has been used in dynamic probabilistic safety assessments, is approached by means of a simplified digitally controlled water volume control system. The Markov/CCMT methodology results in detailed data of the system reliability behavior in relation to time. However, it demands a higher computational effort than usual as the complexity (i.e., number of components and failure states) of the system increases. As a regulatory research conclusion, the methodologies presented can be used on PSA risk informed assessment, contributing to the regulatory side

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    STANDARDIZING FUNCTIONAL SAFETY ASSESSMENTS FOR OFF-THE-SHELF INSTRUMENTATION AND CONTROLS

    Get PDF
    It is typical for digital instrumentation and controls, used to manage significant risk, to undergo substantial amounts of scrutiny. The equipment must be proven to have the necessary level of design integrity. The details of the scrutiny vary based on the particular industry, but the ultimate goal is to provide sufficient evidence that the equipment will operate successfully when performing their required functions. To be able to stand up to the scrutiny and more importantly, successfully perform the required safety functions, the equipment must be designed to defend against random hardware failures and also to prevent systematic faults. These design activities must also have been documented in a manner that sufficiently proves their adequacy. The variability in the requirements of the different industries makes this task difficult for instrumentation and controls equipment manufacturers. To assist the manufacturers in dealing with these differences, a standardization of requirements is needed to facilitate clear communication of expectations. The IEC 61508 set of standards exists to fulfill this role, but it is not yet universally embraced. After that occurs, various industries, from nuclear power generation to oil & gas production, will benefit from the existence of a wider range of equipment that has been designed to perform in these critical roles and that also includes the evidence necessary to prove its integrity. The manufacturers will then be able to enjoy the benefit of having a larger customer base interested in their products. The use of IEC 61508 will also help industries avoid significant amounts of uncertainty when selecting commercial off-the-shelf equipment. It is currently understood that it cannot be assumed that a typical commercial manufacturer’s equipment designs and associated design activities will be adequate to allow for success in these high risk applications. In contrast, a manufacturer that seeks to comply with IEC 61508 and seeks to achieve certification by an independent third party can be assumed to be better suited for meeting the needs of these demanding situations. Use of these manufacturers help to avoid substantial uncertainty and risk
    • …
    corecore