10,379 research outputs found

    Orthonormal bases of regular wavelets in spaces of homogeneous type

    Get PDF
    Adapting the recently developed randomized dyadic structures, we introduce the notion of spline function in geometrically doubling quasi-metric spaces. Such functions have interpolation and reproducing properties as the linear splines in Euclidean spaces. They also have H\"older regularity. This is used to build an orthonormal basis of H\"older-continuous wavelets with exponential decay in any space of homogeneous type. As in the classical theory, wavelet bases provide a universal Calder\'on reproducing formula to study and develop function space theory and singular integrals. We discuss the examples of LpL^p spaces, BMO and apply this to a proof of the T(1) theorem. As no extra condition {(like 'reverse doubling', 'small boundary' of balls, etc.)} on the space of homogeneous type is required, our results extend a long line of works on the subject.Comment: We have made improvements to section 2 following the referees suggestions. In particular, it now contains full proof of formerly Theorem 2.7 instead of sending back to earlier works, which makes the construction of splines self-contained. One reference adde

    Optimising Spatial and Tonal Data for PDE-based Inpainting

    Full text link
    Some recent methods for lossy signal and image compression store only a few selected pixels and fill in the missing structures by inpainting with a partial differential equation (PDE). Suitable operators include the Laplacian, the biharmonic operator, and edge-enhancing anisotropic diffusion (EED). The quality of such approaches depends substantially on the selection of the data that is kept. Optimising this data in the domain and codomain gives rise to challenging mathematical problems that shall be addressed in our work. In the 1D case, we prove results that provide insights into the difficulty of this problem, and we give evidence that a splitting into spatial and tonal (i.e. function value) optimisation does hardly deteriorate the results. In the 2D setting, we present generic algorithms that achieve a high reconstruction quality even if the specified data is very sparse. To optimise the spatial data, we use a probabilistic sparsification, followed by a nonlocal pixel exchange that avoids getting trapped in bad local optima. After this spatial optimisation we perform a tonal optimisation that modifies the function values in order to reduce the global reconstruction error. For homogeneous diffusion inpainting, this comes down to a least squares problem for which we prove that it has a unique solution. We demonstrate that it can be found efficiently with a gradient descent approach that is accelerated with fast explicit diffusion (FED) cycles. Our framework allows to specify the desired density of the inpainting mask a priori. Moreover, is more generic than other data optimisation approaches for the sparse inpainting problem, since it can also be extended to nonlinear inpainting operators such as EED. This is exploited to achieve reconstructions with state-of-the-art quality. We also give an extensive literature survey on PDE-based image compression methods

    Urn Models and Beta-splines

    Get PDF
    Some insight into the properties of beta-splines is gained by applying the techniques of urn models. Urn models are used to construct beta-spline basis functions and to derive the basic properties of these blending functions and the corresponding beta-spline curves. Only the simple notion of linear geometric continuity and with the most elementary beta parameter are outlined. Non-linear geometric continuity leads to additional beta parameters and to more complicated basis functions. Whether urn models can give us any insight into these higher order concepts still remains to be investigated

    Probabilistic Line Searches for Stochastic Optimization

    Full text link
    In deterministic optimization, line searches are a standard tool ensuring stability and efficiency. Where only stochastic gradients are available, no direct equivalent has so far been formulated, because uncertain gradients do not allow for a strict sequence of decisions collapsing the search space. We construct a probabilistic line search by combining the structure of existing deterministic methods with notions from Bayesian optimization. Our method retains a Gaussian process surrogate of the univariate optimization objective, and uses a probabilistic belief over the Wolfe conditions to monitor the descent. The algorithm has very low computational cost, and no user-controlled parameters. Experiments show that it effectively removes the need to define a learning rate for stochastic gradient descent.Comment: Extended version of the NIPS '15 conference paper, includes detailed pseudo-code, 59 pages, 35 figure

    Robust EM algorithm for model-based curve clustering

    Full text link
    Model-based clustering approaches concern the paradigm of exploratory data analysis relying on the finite mixture model to automatically find a latent structure governing observed data. They are one of the most popular and successful approaches in cluster analysis. The mixture density estimation is generally performed by maximizing the observed-data log-likelihood by using the expectation-maximization (EM) algorithm. However, it is well-known that the EM algorithm initialization is crucial. In addition, the standard EM algorithm requires the number of clusters to be known a priori. Some solutions have been provided in [31, 12] for model-based clustering with Gaussian mixture models for multivariate data. In this paper we focus on model-based curve clustering approaches, when the data are curves rather than vectorial data, based on regression mixtures. We propose a new robust EM algorithm for clustering curves. We extend the model-based clustering approach presented in [31] for Gaussian mixture models, to the case of curve clustering by regression mixtures, including polynomial regression mixtures as well as spline or B-spline regressions mixtures. Our approach both handles the problem of initialization and the one of choosing the optimal number of clusters as the EM learning proceeds, rather than in a two-fold scheme. This is achieved by optimizing a penalized log-likelihood criterion. A simulation study confirms the potential benefit of the proposed algorithm in terms of robustness regarding initialization and funding the actual number of clusters.Comment: In Proceedings of the 2013 International Joint Conference on Neural Networks (IJCNN), 2013, Dallas, TX, US

    Forecasting of commercial sales with large scale Gaussian Processes

    Full text link
    This paper argues that there has not been enough discussion in the field of applications of Gaussian Process for the fast moving consumer goods industry. Yet, this technique can be important as it e.g., can provide automatic feature relevance determination and the posterior mean can unlock insights on the data. Significant challenges are the large size and high dimensionality of commercial data at a point of sale. The study reviews approaches in the Gaussian Processes modeling for large data sets, evaluates their performance on commercial sales and shows value of this type of models as a decision-making tool for management.Comment: 1o pages, 5 figure
    corecore