79 research outputs found

    Safety evaluation of timber structures through probabilistic analysis

    Get PDF
    This work presents a procedure for the use of probabilistic modelling techniques in the assessment of safety parameters of existing timber structures, when influenced by two types of actions. The parameters of the models have been defined as probabilistic variables, and Monte Carlo simulation technique was taken into account for safety evaluation. The case study here examined concerns four king post trusses on which a safety evaluation method was conducted to determine a target reliability index. Since the structures presented a high level of deterioration, a model considering the variation of the residual cross-section and the influence of environment in resistance was taken into account. Time dependent deterioration models have also been considered. With the results given by the different used models, it was possible to obtain probabilities of failure and respective reliability indices, as well as time evolution deterioration curves for a deteriorated historical structure.The financial support of the Portuguese Science Foundation (Fundacao de Ciencia e Tecnologia, FCT), through project PTDC/66527-2006, is gratefully acknowledged. The third author acknowledges the support of FCT through research centre UNIC

    In situ measured cross section geometry of old timber structures and its influence on structural safety

    Get PDF
    Old timber structures may show significant variation in the cross section geometry along the same element, as a result of both construction methods and deterioration. As consequence, the definition of the geometric parameters in situ may be both time consuming and costly. This work presents the results of inspections carried out in different timber structures. Based on the obtained results, different simplified geometric models are proposed in order to efficiently model the geometry variations found. Probabilistic modelling techniques are also used to define safety parameters of existing timber structures, when subjected to dead and live loads, namely self-weight and wind actions. The parameters of the models have been defined as probabilistic variables, and safety of a selected case study was assessed using the Monte Carlo simulation technique. Assuming a target reliability index, a model was defined for both the residual cross section and the time dependent deterioration evolution. As a consequence, it was possible to compute probabilities of failure and reliability indices, as well as, time evolution deterioration curves for this structure. The results obtained provide a proposal for definition of the cross section geometric parameters of existing timber structures with different levels of decay, using a simplified probabilistic geometry model and considering a remaining capacity factor for the decayed areas. This model can be used for assessing the safety of the structure at present and for predicting future performance.Fundação para a Ciência e a Tecnologia (FCT
    corecore