600 research outputs found

    Predicting topology propagation messages in mobile ad hoc networks: The value of history

    Get PDF
    This research was funded by the Spanish Government under contracts TIN2016-77836-C2-1-R,TIN2016-77836-C2-2-R, and DPI2016-77415-R, and by the Generalitat de Catalunya as Consolidated ResearchGroups 2017-SGR-688 and 2017-SGR-990.The mobile ad hoc communication in highly dynamic scenarios, like urban evacuations or search-and-rescue processes, plays a key role in coordinating the activities performed by the participants. Particularly, counting on message routing enhances the communication capability among these actors. Given the high dynamism of these networks and their low bandwidth, having mechanisms to predict the network topology offers several potential advantages; e.g., to reduce the number of topology propagation messages delivered through the network, the consumption of resources in the nodes and the amount of redundant retransmissions. Most strategies reported in the literature to perform these predictions are limited to support high mobility, consume a large amount of resources or require training. In order to contribute towards addressing that challenge, this paper presents a history-based predictor (HBP), which is a prediction strategy based on the assumption that some topological changes in these networks have happened before in the past, therefore, the predictor can take advantage of these patterns following a simple and low-cost approach. The article extends a previous proposal of the authors and evaluates its impact in highly mobile scenarios through the implementation of a real predictor for the optimized link state routing (OLSR) protocol. The use of this predictor, named OLSR-HBP, shows a reduction of 40–55% of topology propagation messages compared to the regular OLSR protocol. Moreover, the use of this predictor has a low cost in terms of CPU and memory consumption, and it can also be used with other routing protocols.Peer ReviewedPostprint (published version

    Opportunistic Networks: Present Scenario- A Mirror Review

    Get PDF
    Opportunistic Network is form of Delay Tolerant Network (DTN) and regarded as extension to Mobile Ad Hoc Network. OPPNETS are designed to operate especially in those environments which are surrounded by various issues like- High Error Rate, Intermittent Connectivity, High Delay and no defined route between source to destination node. OPPNETS works on the principle of “Store-and-Forward” mechanism as intermediate nodes perform the task of routing from node to node. The intermediate nodes store the messages in their memory until the suitable node is not located in communication range to transfer the message to the destination. OPPNETs suffer from various issues like High Delay, Energy Efficiency of Nodes, Security, High Error Rate and High Latency. The aim of this research paper is to overview various routing protocols available till date for OPPNETs and classify the protocols in terms of their performance. The paper also gives quick review of various Mobility Models and Simulation tools available for OPPNETs simulation

    Assessment of satellite contacts using predictive algorithms for autonomous satellite networks

    Get PDF
    Upcoming Low Earth Orbit Satellite Networks will provide low-latency and high downlink capacity necessary for future broadband communications and Earth Observation missions. This architecture was proposed at the beginning of the 90’s, although it has just recently re-gained popularity thanks to the so-called Mega-Constellations. This network is composed of satellites that have Inter-Satellite Links (ISL) to communicate between them. Due to the satellite motion, an ISL is a temporal contact between two satellites characterized by a lifetime in which the communication remains feasible. The determination of a route between distant satellites is a challenging problem in this context. However, the satellite follows a well-known deterministic orbit trajectory, being feasible the prediction of its position by propagating a trajectory model over time. The Contact Graph Routing protocol uses this feature to determine the evolution of the routes by pre-computing on-ground a planning of the satellite contacts. This centralized ground-dependent solution cannot be directly applied in the Internet of Satellites paradigm, which proposes the autonomous deployment of heterogeneous satellite networks without pre-assuming any specific satellite system architecture. Following this concept, the present work proposes a distributed algorithm by which a satellite predicts neighbor contacts, and generates a global contact plan without trajectory propagation. To achieve this solution, an ISL has been modeled as a “close approach” between two satellites, which is characterized by their relative motion. The present work details the predictive algorithm, and evaluates its performance in two scenarios with a hybrid satellite constellation and a mega-constellation.This work was supported in part by the CommSensLab Excellence Research Unit Maria de Maeztu (MINECO) under GrantMDM-2016-0600, in part by the Spanish Ministerio MICINN and EU ERDF Project (Sensing With Pioneering Opportunistic Techniques) under Grant RTI2018-099008-B-C21, in part by the AGAUR—Generalitat de Catalunya (FEDER) under Grant FI-DGR 2015, and in partby the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya under Grant 2017 SGR 376Peer ReviewedPostprint (published version

    Estimating File-Spread in Delay Tolerant Networks under Two-Hop Routing

    Get PDF
    Part 6: DTN and Wireless Sensor NetworksInternational audienceWe consider a Delay/Disruption Tolerant Network under two-hop routing. Our objective is to estimate and track the degree of spread of a message/file in the network. Indeed, having such real-time information is critical for on-line control of routing and energy expenditure. It also benefits the multi-casting application. With exponential inter-meeting times of mobile nodes: (i) for the estimation problem, we obtain exact expressions for the minimum mean-squared error (MMSE) estimator, and (ii) for the tracking problem, we first derive the diffusion approximations for the system dynamics and the measurements and then apply Kalman filtering. We also apply the solutions of the estimation and filtering problems to predict the time when a certain pre-defined fraction of nodes have received a copy of the message/file. Our analytical results are corroborated with extensive simulation results

    Flexible and dynamic network coding for adaptive data transmission in DTNs

    Get PDF
    Existing network coding approaches for Delay-Tolerant Networks (DTNs) do not detect and adapt to congestion in the network. In this paper we describe CafNC (Congestion aware forwarding with Network Coding) that combines adaptive network coding and adaptive forwarding in DTNs. In CafNC each node learns the status of its neighbours, and their egonetworks in order to detect coding opportunities, and codes as long as the recipients can decode. Our flexible design allows CafNC to efficiently support multiple unicast flows, with dynamic traffic demands and dynamic senders and receivers. We evaluate CafNC with two real connectivity traces and a realistic P2P application, introducing congestion by increasing the number of unicast flows in the network. Our results show that CafNC improves the success ratio, delay and packet loss, as the number of flows grows in comparison to no coding and hub-based static coding, while at the same time achieving efficient utilisation of network resources. We also show that static coding misses a number of coding opportunities and increases packet loss rates at times of increased congestion

    Towards Efficient File Sharing and Packet Routing in Mobile Opportunistic Networks

    Get PDF
    With the increasing popularity of portable digital devices (e.g., smartphones, laptops, and tablets), mobile opportunistic networks (MONs) [40, 90] consisting of portable devices have attracted much attention recently. MONs are also known as pocket switched networks (PSNs) [52]. MONs can be regarded as a special form of mobile ad hoc networks (MANETs) [7] or delay tolerant networks (DTNs) [35, 56]. In such networks, mobile nodes (devices) move continuously and meet opportunistically. Two mobile nodes can communicate with each other only when they are within the communication range of each other in a peer-to-peer (P2P) manner (i.e., without the need of infrastructures). Therefore, such a network structure can potentially provide file sharing or packet routing services among portable devices without the support of network infrastructures. On the other hand, mobile opportunistic networks often experience frequent network partition, and no end-to-end contemporaneous path can be ensured in the network. These distinctive properties make traditional file sharing or packet routing algorithms in Internet or mobile networks a formidable challenge in MONs. In summary, it is essential and important to achieve efficient file sharing and packet routing algorithms in MONs, which are the key for providing practical and novel services and applications over such networks. In this Dissertation, we develop several methods to resolve the aforementioned challenges. Firstly, we propose two methods to enhance file sharing efficiency in MONs by creating replicas and by leveraging social network properties, respectively. In the first method, we investigate how to create file replicas to optimize file availability for file sharing in MONs. We introduce a new concept of resource for file replication, which considers both node storage and meeting frequency with other nodes. We theoretically study the influence of resource allocation on the average file access delay and derive a resource allocation rule to minimize the average file access delay. We also propose a distributed file replication protocol to realize the deduced optimal file replication rule. In the second method, we leverage social network properties to improve the file searching efficiency in MONs. This method groups common-interest nodes that frequently meet with each other into a community. It takes advantage of node mobility by designating stable nodes, which have the most frequent contact with community members, as community coordinators for intra-community file request forwarding, and highly-mobile nodes that visit other communities frequently as community ambassadors for inter-community file request forwarding. Based on such a community structure, an interest-oriented file searching scheme is proposed to first search local community and then search the community that is most likely to contain the requested file, leading to highly efficient file sharing in MONs. Secondly, we propose two methods to realize efficient packet routing among mobile nodes and among different landmarks in MONs, respectively. The first method utilizes distributed social map to route packets to mobile nodes efficiently with a low-cost in MONs. Each node builds its own social map consisting of nodes it has met and their frequently encountered nodes in a distributed manner. Based on both encountering frequency and social closeness of two linked nodes in the social map, we decide the weight of each link to reflect the packet delivery ability between the two nodes. The social map enables more accurate forwarder selection through a broader view and reduces the cost on information exchange. The second method realizes high-throughput packet routing among different landmarks in MONs. It selects popular places that nodes visit frequently as landmarks and divides the entire MON area into sub-areas represented by landmarks. Nodes transiting between two landmarks relay packets between the two landmarks. The frequency of node transits between two landmarks is measured to represent the forwarding capacity between them, based on which routing tables are built on each landmark to guide packet routing. Finally, packets are routed landmark by landmark to reach their destination landmarks. Extensive analysis and real-trace based experiments are conducted to support the designs in this Dissertation and demonstrate the effectiveness of the proposed methods in comparison with the state-of-art methods. In the future, we plan to further enhance the file sharing and packet routing efficiency by considering more realistic scenarios or including more useful information. We will also investigate the security and privacy issues in the proposed methods

    A Survey of Social Network Analysis Techniques and their Applications to Socially Aware Networking

    Get PDF
    Socially aware networking is an emerging research field that aims to improve the current networking technologies and realize novel network services by applying social network analysis (SNA) techniques. Conducting socially aware networking studies requires knowledge of both SNA and communication networking, but it is not easy for communication networking researchers who are unfamiliar with SNA to obtain comprehensive knowledge of SNA due to its interdisciplinary nature. This paper therefore aims to fill the knowledge gap for networking researchers who are interested in socially aware networking but are not familiar with SNA. This paper surveys three types of important SNA techniques for socially aware networking: identification of influential nodes, link prediction, and community detection. Then, this paper introduces how SNA techniques are used in socially aware networking and discusses research trends in socially aware networking
    • …
    corecore