85,008 research outputs found

    Probabilistic optimization in graph-problems

    Get PDF
    We study a probabilistic optimization model for graph-problems under vertex-uncertainty. We assume that any vertex vi of the input-graph G(V,E) has only a probability pi to be present in the final graph to be optimized (i.e., the final instance for the problem tackled will be only a sub-graph of the initial graph). Under this model, the original "deterministic" problem gives rise to a new (deterministic) problem on the same input-graph G, having the same set of feasible solutions as the former one, but its objective function can be very different from the original one, the set of its optimal solutions too. Moreover, this objective function is a sum of 2|V| terms; hence, its computation is not immediately polynomial. We give sufficient conditions for large classes of graph-problems under which objective functions of the probabilistic counterparts are polynomially computable and optimal solutions are well-characterized. Finally, we apply these general results to natural and well-known combinatorial problems that belong to the classes considered

    Algorithmic Graph Theory

    Get PDF
    The main focus of this workshop was on mathematical techniques needed for the development of efficient solutions and algorithms for computationally difficult graph problems. The techniques studied at the workshhop included: the probabilistic method and randomized algorithms, approximation and optimization, structured families of graphs and approximation algorithms for large problems. The workshop Algorithmic Graph Theory was attended by 46 participants, many of them being young researchers. In 15 survey talks an overview of recent developments in Algorithmic Graph Theory was given. These talks were supplemented by 10 shorter talks and by two special sessions

    Probabilistic Analysis of Optimization Problems on Generalized Random Shortest Path Metrics

    Get PDF
    Simple heuristics often show a remarkable performance in practice for optimization problems. Worst-case analysis often falls short of explaining this performance. Because of this, "beyond worst-case analysis" of algorithms has recently gained a lot of attention, including probabilistic analysis of algorithms. The instances of many optimization problems are essentially a discrete metric space. Probabilistic analysis for such metric optimization problems has nevertheless mostly been conducted on instances drawn from Euclidean space, which provides a structure that is usually heavily exploited in the analysis. However, most instances from practice are not Euclidean. Little work has been done on metric instances drawn from other, more realistic, distributions. Some initial results have been obtained by Bringmann et al. (Algorithmica, 2013), who have used random shortest path metrics on complete graphs to analyze heuristics. The goal of this paper is to generalize these findings to non-complete graphs, especially Erd\H{o}s-R\'enyi random graphs. A random shortest path metric is constructed by drawing independent random edge weights for each edge in the graph and setting the distance between every pair of vertices to the length of a shortest path between them with respect to the drawn weights. For such instances, we prove that the greedy heuristic for the minimum distance maximum matching problem, the nearest neighbor and insertion heuristics for the traveling salesman problem, and a trivial heuristic for the kk-median problem all achieve a constant expected approximation ratio. Additionally, we show a polynomial upper bound for the expected number of iterations of the 2-opt heuristic for the traveling salesman problem.Comment: An extended abstract appeared in the proceedings of WALCOM 201
    corecore