3,737 research outputs found

    Probabilistic movement modeling for intention inference in human-robot interaction.

    No full text
    Intention inference can be an essential step toward efficient humanrobot interaction. For this purpose, we propose the Intention-Driven Dynamics Model (IDDM) to probabilistically model the generative process of movements that are directed by the intention. The IDDM allows to infer the intention from observed movements using Bayes ’ theorem. The IDDM simultaneously finds a latent state representation of noisy and highdimensional observations, and models the intention-driven dynamics in the latent states. As most robotics applications are subject to real-time constraints, we develop an efficient online algorithm that allows for real-time intention inference. Two human-robot interaction scenarios, i.e., target prediction for robot table tennis and action recognition for interactive humanoid robots, are used to evaluate the performance of our inference algorithm. In both intention inference tasks, the proposed algorithm achieves substantial improvements over support vector machines and Gaussian processes.

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Probabilistic Human Mobility Model in Indoor Environment

    Full text link
    Understanding human mobility is important for the development of intelligent mobile service robots as it can provide prior knowledge and predictions of human distribution for robot-assisted activities. In this paper, we propose a probabilistic method to model human motion behaviors which is determined by both internal and external factors in an indoor environment. While the internal factors are represented by the individual preferences, aims and interests, the external factors are indicated by the stimulation of the environment. We model the randomness of human macro-level movement, e.g., the probability of visiting a specific place and staying time, under the Bayesian framework, considering the influence of both internal and external variables. We use two case studies in a shopping mall and in a college student dorm building to show the effectiveness of our proposed probabilistic human mobility model. Real surveillance camera data are used to validate the proposed model together with survey data in the case study of student dorm.Comment: 8 pages, 9 figures, International Joint Conference on Neural Networks (IJCNN) 201

    Bayesian Inference of Self-intention Attributed by Observer

    Full text link
    Most of agents that learn policy for tasks with reinforcement learning (RL) lack the ability to communicate with people, which makes human-agent collaboration challenging. We believe that, in order for RL agents to comprehend utterances from human colleagues, RL agents must infer the mental states that people attribute to them because people sometimes infer an interlocutor's mental states and communicate on the basis of this mental inference. This paper proposes PublicSelf model, which is a model of a person who infers how the person's own behavior appears to their colleagues. We implemented the PublicSelf model for an RL agent in a simulated environment and examined the inference of the model by comparing it with people's judgment. The results showed that the agent's intention that people attributed to the agent's movement was correctly inferred by the model in scenes where people could find certain intentionality from the agent's behavior

    Learning Social Affordance Grammar from Videos: Transferring Human Interactions to Human-Robot Interactions

    Full text link
    In this paper, we present a general framework for learning social affordance grammar as a spatiotemporal AND-OR graph (ST-AOG) from RGB-D videos of human interactions, and transfer the grammar to humanoids to enable a real-time motion inference for human-robot interaction (HRI). Based on Gibbs sampling, our weakly supervised grammar learning can automatically construct a hierarchical representation of an interaction with long-term joint sub-tasks of both agents and short term atomic actions of individual agents. Based on a new RGB-D video dataset with rich instances of human interactions, our experiments of Baxter simulation, human evaluation, and real Baxter test demonstrate that the model learned from limited training data successfully generates human-like behaviors in unseen scenarios and outperforms both baselines.Comment: The 2017 IEEE International Conference on Robotics and Automation (ICRA

    Fast human motion prediction for human-robot collaboration with wearable interfaces

    Full text link
    In this paper, we aim at improving human motion prediction during human-robot collaboration in industrial facilities by exploiting contributions from both physical and physiological signals. Improved human-machine collaboration could prove useful in several areas, while it is crucial for interacting robots to understand human movement as soon as possible to avoid accidents and injuries. In this perspective, we propose a novel human-robot interface capable to anticipate the user intention while performing reaching movements on a working bench in order to plan the action of a collaborative robot. The proposed interface can find many applications in the Industry 4.0 framework, where autonomous and collaborative robots will be an essential part of innovative facilities. A motion intention prediction and a motion direction prediction levels have been developed to improve detection speed and accuracy. A Gaussian Mixture Model (GMM) has been trained with IMU and EMG data following an evidence accumulation approach to predict reaching direction. Novel dynamic stopping criteria have been proposed to flexibly adjust the trade-off between early anticipation and accuracy according to the application. The output of the two predictors has been used as external inputs to a Finite State Machine (FSM) to control the behaviour of a physical robot according to user's action or inaction. Results show that our system outperforms previous methods, achieving a real-time classification accuracy of 94.3±2.9%94.3\pm2.9\% after 160.0msec±80.0msec160.0msec\pm80.0msec from movement onset
    • …
    corecore