4,873 research outputs found

    A Bayesian Poisson-Gaussian Process Model for Popularity Learning in Edge-Caching Networks

    Get PDF
    Edge-caching is recognized as an efficient technique for future cellular networks to improve network capacity and user-perceived quality of experience. To enhance the performance of caching systems, designing an accurate content request prediction algorithm plays an important role. In this paper, we develop a flexible model, a Poisson regressor based on a Gaussian process, for the content request distribution. The first important advantage of the proposed model is that it encourages the already existing or seen contents with similar features to be correlated in the feature space and therefore it acts as a regularizer for the estimation. Second, it allows to predict the popularities of newly-added or unseen contents whose statistical data is not available in advance. In order to learn the model parameters, which yield the Poisson arrival rates or alternatively the content \textit{popularities}, we invoke the Bayesian approach which is robust against over-fitting. However, the resulting posterior distribution is analytically intractable to compute. To tackle this, we apply a Markov Chain Monte Carlo (MCMC) method to approximate this distribution which is also asymptotically exact. Nevertheless, the MCMC is computationally demanding especially when the number of contents is large. Thus, we employ the Variational Bayes (VB) method as an alternative low complexity solution. More specifically, the VB method addresses the approximation of the posterior distribution through an optimization problem. Subsequently, we present a fast block-coordinate descent algorithm to solve this optimization problem. Finally, extensive simulation results both on synthetic and real-world datasets are provided to show the accuracy of our prediction algorithm and the cache hit ratio (CHR) gain compared to existing methods from the literature

    Content Placement in Cache-Enabled Sub-6 GHz and Millimeter-Wave Multi-antenna Dense Small Cell Networks

    Get PDF
    This paper studies the performance of cache-enabled dense small cell networks consisting of multi-antenna sub-6 GHz and millimeter-wave base stations. Different from the existing works which only consider a single antenna at each base station, the optimal content placement is unknown when the base stations have multiple antennas. We first derive the successful content delivery probability by accounting for the key channel features at sub-6 GHz and mmWave frequencies. The maximization of the successful content delivery probability is a challenging problem. To tackle it, we first propose a constrained cross-entropy algorithm which achieves the near-optimal solution with moderate complexity. We then develop another simple yet effective heuristic probabilistic content placement scheme, termed two-stair algorithm, which strikes a balance between caching the most popular contents and achieving content diversity. Numerical results demonstrate the superior performance of the constrained cross-entropy method and that the two-stair algorithm yields significantly better performance than only caching the most popular contents. The comparisons between the sub-6 GHz and mmWave systems reveal an interesting tradeoff between caching capacity and density for the mmWave system to achieve similar performance as the sub-6 GHz system.Comment: 14 pages; Accepted to appear in IEEE Transactions on Wireless Communication

    Green OFDMA Resource Allocation in Cache-Enabled CRAN

    Full text link
    Cloud radio access network (CRAN), in which remote radio heads (RRHs) are deployed to serve users in a target area, and connected to a central processor (CP) via limited-capacity links termed the fronthaul, is a promising candidate for the next-generation wireless communication systems. Due to the content-centric nature of future wireless communications, it is desirable to cache popular contents beforehand at the RRHs, to reduce the burden on the fronthaul and achieve energy saving through cooperative transmission. This motivates our study in this paper on the energy efficient transmission in an orthogonal frequency division multiple access (OFDMA)-based CRAN with multiple RRHs and users, where the RRHs can prefetch popular contents. We consider a joint optimization of the user-SC assignment, RRH selection and transmit power allocation over all the SCs to minimize the total transmit power of the RRHs, subject to the RRHs' individual fronthaul capacity constraints and the users' minimum rate constraints, while taking into account the caching status at the RRHs. Although the problem is non-convex, we propose a Lagrange duality based solution, which can be efficiently computed with good accuracy. We compare the minimum transmit power required by the proposed algorithm with different caching strategies against the case without caching by simulations, which show the significant energy saving with caching.Comment: Presented in IEEE Online Conference on Green Communications (Online GreenComm), Nov. 2016 (Invited Paper
    • …
    corecore