189 research outputs found

    Mining Frequent Itemsets for Evolving Database Involving Insertion

    Get PDF
    Mining frequent itemsets is one of the popular task in data mining. There are many applications like location-based services, sensor monitoring systems, and data integration in which the content of transaction is uncertain in nature. This initiates the requirements of uncertain data mining. The frequent itemsets mining in uncertain transaction databases semantically and computationally differs from techniques applied to standard certain databases. The goal of proposed model is to deal with the problem of extracting frequent itemsets from evolving databases using Possible World Semantics (PWS). As evolving databases contains exponential number of possible worlds mining process can be modeled as Poisson Binomial Distribution (PBD). In this proposed work apriori-based PFI mining algorithm and approximate incremental mining algorithm are developed. An approximate incremental mining algorithm can efficiently and accurately discover frequent itemsets. Also, focus is on the issue of maintaining mining results for uncertain databases. DOI: 10.17762/ijritcc2321-8169.150615

    Generalised Interaction Mining: Probabilistic, Statistical and Vectorised Methods in High Dimensional or Uncertain Databases

    Get PDF
    Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, useful and ultimately understandable patterns in data. The core step of the KDD process is the application of Data Mining (DM) algorithms to efficiently find interesting patterns in large databases. This thesis concerns itself with three inter-related themes: Generalised interaction and rule mining; the incorporation of statistics into novel data mining approaches; and probabilistic frequent pattern mining in uncertain databases. An interaction describes an effect that variables have -- or appear to have -- on each other. Interaction mining is the process of mining structures on variables describing their interaction patterns -- usually represented as sets, graphs or rules. Interactions may be complex, represent both positive and negative relationships, and the presence of interactions can influence another interaction or variable in interesting ways. Finding interactions is useful in domains ranging from social network analysis, marketing, the sciences, e-commerce, to statistics and finance. Many data mining tasks may be considered as mining interactions, such as clustering; frequent itemset mining; association rule mining; classification rules; graph mining; flock mining; etc. Interaction mining problems can have very different semantics, pattern definitions, interestingness measures and data types. Solving a wide range of interaction mining problems at the abstract level, and doing so efficiently -- ideally more efficiently than with specialised approaches, is a challenging problem. This thesis introduces and solves the Generalised Interaction Mining (GIM) and Generalised Rule Mining (GRM) problems. GIM and GRM use an efficient and intuitive computational model based purely on vector valued functions. The semantics of the interactions, their interestingness measures and the type of data considered are flexible components of vectorised frameworks. By separating the semantics of a problem from the algorithm used to mine it, the frameworks allow both to vary independently of each other. This makes it easier to develop new methods by focusing purely on a problem's semantics and removing the burden of designing an efficient algorithm. By encoding interactions as vectors in the space (or a sub-space) of samples, they provide an intuitive geometric interpretation that inspires novel methods. By operating in time linear in the number of interesting interactions that need to be examined, the GIM and GRM algorithms are optimal. The use of GRM or GIM provides efficient solutions to a range of problems in this thesis, including graph mining, counting based methods, itemset mining, clique mining, a clustering problem, complex pattern mining, negative pattern mining, solving an optimisation problem, spatial data mining, probabilistic itemset mining, probabilistic association rule mining, feature selection and generation, classification and multiplication rule mining. Data mining is a hypothesis generating endeavour, examining large databases for patterns suggesting novel and useful knowledge to the user. Since the database is a sample, the patterns found should describe hypotheses about the underlying process generating the data. In searching for these patterns, a DM algorithm makes additional hypothesis when it prunes the search space. Natural questions to ask then, are: "Does the algorithm find patterns that are statistically significant?" and "Did the algorithm make significant decisions during its search?". Such questions address the quality of patterns found though data mining and the confidence that a user can have in utilising them. Finally, statistics has a range of useful tools and measures that are applicable in data mining. In this context, this thesis incorporates statistical techniques -- in particular, non-parametric significance tests and correlation -- directly into novel data mining approaches. This idea is applied to statistically significant and relatively class correlated rule based classification of imbalanced data sets; significant frequent itemset mining; mining complex correlation structures between variables for feature selection; mining correlated multiplication rules for interaction mining and feature generation; and conjunctive correlation rules for classification. The application of GIM or GRM to these problems lead to efficient and intuitive solutions. Frequent itemset mining (FIM) is a fundamental problem in data mining. While it is usually assumed that the items occurring in a transaction are known for certain, in many applications the data is inherently noisy or probabilistic; such as adding noise in privacy preserving data mining applications, aggregation or grouping of records leading to estimated purchase probabilities, and databases capturing naturally uncertain phenomena. The consideration of existential uncertainty of item(sets) makes traditional techniques inapplicable. Prior to the work in this thesis, itemsets were mined if their expected support is high. This returns only an estimate, ignores the probability distribution of support, provides no confidence in the results, and can lead to scenarios where itemsets are labeled frequent even if they are more likely to be infrequent. Clearly, this is undesirable. This thesis proposes and solves the Probabilistic Frequent Itemset Mining (PFIM) problem, where itemsets are considered interesting if the probability that they are frequent is high. The problem is solved under the possible worlds model and a proposed probabilistic framework for PFIM. Novel and efficient methods are developed for computing an itemset's exact support probability distribution and frequentness probability, using the Poisson binomial recurrence, generating functions, or a Normal approximation. Incremental methods are proposed to answer queries such as finding the top-k probabilistic frequent itemsets. A number of specialised PFIM algorithms are developed, with each being more efficient than the last: ProApriori is the first solution to PFIM and is based on candidate generation and testing. ProFP-Growth is the first probabilistic FP-Growth type algorithm and uses a proposed probabilistic frequent pattern tree (Pro-FPTree) to avoid candidate generation. Finally, the application of GIM leads to GIM-PFIM; the fastest known algorithm for solving the PFIM problem. It achieves orders of magnitude improvements in space and time usage, and leads to an intuitive subspace and probability-vector based interpretation of PFIM.Knowledge Discovery in Datenbanken (KDD) ist der nicht-triviale Prozess, gültiges, neues, potentiell nützliches und letztendlich verständliches Wissen aus großen Datensätzen zu extrahieren. Der wichtigste Schritt im KDD Prozess ist die Anwendung effizienter Data Mining (DM) Algorithmen um interessante Muster ("Patterns") in Datensätzen zu finden. Diese Dissertation beschäftigt sich mit drei verwandten Themen: Generalised Interaction und Rule Mining, die Einbindung von statistischen Methoden in neue DM Algorithmen und Probabilistic Frequent Itemset Mining (PFIM) in unsicheren Daten. Eine Interaktion ("Interaction") beschreibt den Einfluss, den Variablen aufeinander haben. Interaktionsmining ist der Prozess, Strukturen zwischen Variablen zu finden, die Interaktionsmuster beschreiben. Diese werden gewöhnlicherweise als Mengen, Graphen oder Regeln repräsentiert. Interaktionen können komplex sein und sowohl positive als auch negative Beziehungen repräsentieren. Außerdem kann das Vorhandensein von Interaktionen andere Interaktionen oder Variablen beeinflussen. Interaktionen stellen in Bereichen wie Soziale Netzwerk Analyse, Marketing, Wissenschaft, E-commerce, Statistik und Finanz wertvolle Information dar. Viele DM Methoden können als Interaktionsmining betrachtet werden: Zum Beispiel Clustering, Frequent Itemset Mining, Assoziationsregeln, Klassifikationsregeln, Graph Mining, Flock Mining, usw. Interaktionsmining-Probleme können sehr unterschiedliche Semantik, Musterdefinitionen, Interessantheitsmaße und Datentypen erfordern. Interaktionsmining-Probleme auf breiter und abstrakter Basis effizient -- und im Idealfall effizienter als mit spezialisierten Methoden -- zu lösen, ist ein herausforderndes Problem. Diese Dissertation führt das Generalised Interaction Mining (GIM) und das Generalised Rule Mining (GRM) Problem ein und beschreibt Lösungen für diese. GIM und GRM benutzen ein effizientes und intuitives Berechnungsmodell, das einzig und allein auf vektorbasierten Funktionen beruht. Die Semantik der Interaktionen, ihre Interessantheitsmaße und die Datenarten, sind Komponenten in vektorisierten Frameworks. Die Frameworks ermöglichen die Trennung der Problemsemantik vom Algorithmus, so dass beide unabhängig voneinander geändert werden können. Die Entwicklung neuer Methoden wird dadurch erleichtert, da man sich völlig auf die Problemsemantik fokussieren kann und sich nicht mit der Entwicklung problemspezifischer Algorithmen befassen muss. Die Kodierung der Interaktionen als Vektoren im gesamten Raum (oder Teilraum) der Stichproben stellt eine intuitive geometrische Interpretation dar, die neuartige Methoden inspiriert. Die GRM- und GIM- Algorithmen haben lineare Laufzeit in der Anzahl der Interaktionen die geprüft werden müssen und sind somit optimal. Die Anwendung von GRM oder GIM in dieser Dissertation ermöglicht effiziente Lösungen für eine Reihe von Problemen, wie zum Beispiel Graph Mining, Aufzählungsmethoden, Itemset Mining, Clique Mining, ein Clusteringproblem, das Finden von komplexen und negativen Mustern, die Lösung von Optimierungsproblemen, Spatial Data Mining, probabilistisches Itemset Mining, probabilistisches Mining von Assoziationsregel, Selektion und Erzeugung von Features, Mining von Klassifikations- und Multiplikationsregel, u.v.m. Data Mining ist ein Verfahren, das Hypothesen produziert, indem es in großen Datensätzen Muster findet und damit für den Anwender neues und nützliches Wissen vorschlägt. Da die untersuchte Datenbank ein Resultat des datenerzeugenden Prozesses ist, sollten die gefundenen Muster Erkenntnisse über diesen Prozess liefern. Bei der Suche nach diesen Mustern macht ein DM Algorithmus zusätzliche Hypothesen, wenn Teile des Suchraums ausgeschlossen werden. Die folgenden Fragen sind dabei wichtig: "Findet der Algorithmus statistisch signifikante Muster?" und "Hat der Algorithmus während des Suchprozesses signifikante Entscheidungen getroffen?". Diese Fragen beeinflussen die Qualität der Muster und die Sicherheit die der Anwender in ihrer Benutzung haben kann. Da die Statistik auch eine Reihe von nützlichen Methoden bereitstellt, die für DM anwendbar sind, kombiniert diese Dissertation einige statistische Methoden mit neuen DM Algorithmen, insbesondere nicht-parametrische Signifikanztests und Korrelation. Diese Idee wird für die folgenden Probleme angewandt: Signifikante und "relatively class correlated" regelbasierte Klassifikation in unsymmetrischen Datensätzen, signifikantes Frequent Itemset Mining, Mining von komplizierten Korrelationsstrukturen zwischen Variablen zum Zweck der Featureselektion, Mining von korrelierten Multiplikationsregeln zum Zwecke des Interaktionsminings und Featureerzeugung und konjunktive Korrelationsregeln für die Klassifikation. Die Anwendung von GIM und GRM auf diese Probleme führt zu effizienten und intuitiven Lösungen. Frequent Itemset Mining (FIM) ist ein fundamentales Problem im Data Mining. Obwohl allgemein die Annahme gilt, dass in einer Transaktion enthaltene Items bekannt sind, sind die Daten in vielen Anwendungen unsicher oder probabilistisch. Beispiele sind das Hinzufügen von Rauschen zu Datenschutzzwecken, die Gruppierung von Datensätzen die zu geschätzten Kaufwahrscheinlichkeiten führen und Datensätze deren Herkunft von Natur aus unsicher sind. Die Berücksichtigung von unsicheren Datensätzen verhindert die Anwendung von traditionellen Methoden. Vor der Arbeit in dieser Dissertation wurden Itemsets gesucht, deren erwartetes Vorkommen hoch ist. Diese Methode produziert jedoch nur Schätzwerte, vernachlässigt die Wahrscheinlichkeitsverteilung der Vorkommen, bietet keine Sicherheit für die Genauigkeit der Ergebnisse und kann zu Szenarien führen in denen das Vorkommen als häufig eingestuft wird, obwohl die Wahrscheinlichkeit höher ist, dass sie nur selten vorkommen. Solche Ergebnisse sind natürlich unerwünscht. Diese Dissertation führt das Probabilistic Frequent Itemset Mining (PFIM) ein. Diese Lösung betrachtet Itemsets als interessant, wenn die Wahrscheinlichkeit groß ist, dass sie häufig vorkommen. Die Problemlösung besteht aus der Anwendung des Possible Worlds Models und dem vorgeschlagenen probabilistisches Framework für PFIM. Es werden neue und effiziente Methoden entwickelt um die Wahrscheinlichkeitsverteilung des Vorkommens und die Häufigkeitsverteilung eines Itemsets zu berechnen. Dazu werden die Poisson Binomial Recurrence, Generating Functions, oder eine normalverteilte Annäherung verwendet. Inkrementelle Methoden werden vorgeschlagen um Fragen wie "Finde die top-k Probabilistic Frequent Itemsets" zu beantworten. Mehrere PFIM Algorithmen werden entwickelt, wobei die Effizienz von Algorithmus zu Algorithmus steigt: ProApriori ist die erste Lösung für PFIM und basiert auf erzeugen und testen von Kandidaten. ProFP-Growth ist der erste probabilistische FP-Growth Algorithmus. Er schlägt einen Probabilistic Frequent Pattern Tree (Pro-FPTree) vor, der Kandidatenerzeugung überflüssig macht. Die Anwendung von GIM führt schließlich zu GIM-PFIM, dem schnellsten bekannten Algorithmus zur Lösung des PFIM Problems. Dieser Algorithmus resultiert in einem um Größenordnungen besseren Zeit- und Speicherbedarf, und führt zu einer intuitiven Interpretation von PFIM, basierend auf Unterräumen und Wahrscheinlichkeitsvektoren

    Generalised Interaction Mining: Probabilistic, Statistical and Vectorised Methods in High Dimensional or Uncertain Databases

    Get PDF
    Knowledge Discovery in Databases (KDD) is the non-trivial process of identifying valid, novel, useful and ultimately understandable patterns in data. The core step of the KDD process is the application of Data Mining (DM) algorithms to efficiently find interesting patterns in large databases. This thesis concerns itself with three inter-related themes: Generalised interaction and rule mining; the incorporation of statistics into novel data mining approaches; and probabilistic frequent pattern mining in uncertain databases. An interaction describes an effect that variables have -- or appear to have -- on each other. Interaction mining is the process of mining structures on variables describing their interaction patterns -- usually represented as sets, graphs or rules. Interactions may be complex, represent both positive and negative relationships, and the presence of interactions can influence another interaction or variable in interesting ways. Finding interactions is useful in domains ranging from social network analysis, marketing, the sciences, e-commerce, to statistics and finance. Many data mining tasks may be considered as mining interactions, such as clustering; frequent itemset mining; association rule mining; classification rules; graph mining; flock mining; etc. Interaction mining problems can have very different semantics, pattern definitions, interestingness measures and data types. Solving a wide range of interaction mining problems at the abstract level, and doing so efficiently -- ideally more efficiently than with specialised approaches, is a challenging problem. This thesis introduces and solves the Generalised Interaction Mining (GIM) and Generalised Rule Mining (GRM) problems. GIM and GRM use an efficient and intuitive computational model based purely on vector valued functions. The semantics of the interactions, their interestingness measures and the type of data considered are flexible components of vectorised frameworks. By separating the semantics of a problem from the algorithm used to mine it, the frameworks allow both to vary independently of each other. This makes it easier to develop new methods by focusing purely on a problem's semantics and removing the burden of designing an efficient algorithm. By encoding interactions as vectors in the space (or a sub-space) of samples, they provide an intuitive geometric interpretation that inspires novel methods. By operating in time linear in the number of interesting interactions that need to be examined, the GIM and GRM algorithms are optimal. The use of GRM or GIM provides efficient solutions to a range of problems in this thesis, including graph mining, counting based methods, itemset mining, clique mining, a clustering problem, complex pattern mining, negative pattern mining, solving an optimisation problem, spatial data mining, probabilistic itemset mining, probabilistic association rule mining, feature selection and generation, classification and multiplication rule mining. Data mining is a hypothesis generating endeavour, examining large databases for patterns suggesting novel and useful knowledge to the user. Since the database is a sample, the patterns found should describe hypotheses about the underlying process generating the data. In searching for these patterns, a DM algorithm makes additional hypothesis when it prunes the search space. Natural questions to ask then, are: "Does the algorithm find patterns that are statistically significant?" and "Did the algorithm make significant decisions during its search?". Such questions address the quality of patterns found though data mining and the confidence that a user can have in utilising them. Finally, statistics has a range of useful tools and measures that are applicable in data mining. In this context, this thesis incorporates statistical techniques -- in particular, non-parametric significance tests and correlation -- directly into novel data mining approaches. This idea is applied to statistically significant and relatively class correlated rule based classification of imbalanced data sets; significant frequent itemset mining; mining complex correlation structures between variables for feature selection; mining correlated multiplication rules for interaction mining and feature generation; and conjunctive correlation rules for classification. The application of GIM or GRM to these problems lead to efficient and intuitive solutions. Frequent itemset mining (FIM) is a fundamental problem in data mining. While it is usually assumed that the items occurring in a transaction are known for certain, in many applications the data is inherently noisy or probabilistic; such as adding noise in privacy preserving data mining applications, aggregation or grouping of records leading to estimated purchase probabilities, and databases capturing naturally uncertain phenomena. The consideration of existential uncertainty of item(sets) makes traditional techniques inapplicable. Prior to the work in this thesis, itemsets were mined if their expected support is high. This returns only an estimate, ignores the probability distribution of support, provides no confidence in the results, and can lead to scenarios where itemsets are labeled frequent even if they are more likely to be infrequent. Clearly, this is undesirable. This thesis proposes and solves the Probabilistic Frequent Itemset Mining (PFIM) problem, where itemsets are considered interesting if the probability that they are frequent is high. The problem is solved under the possible worlds model and a proposed probabilistic framework for PFIM. Novel and efficient methods are developed for computing an itemset's exact support probability distribution and frequentness probability, using the Poisson binomial recurrence, generating functions, or a Normal approximation. Incremental methods are proposed to answer queries such as finding the top-k probabilistic frequent itemsets. A number of specialised PFIM algorithms are developed, with each being more efficient than the last: ProApriori is the first solution to PFIM and is based on candidate generation and testing. ProFP-Growth is the first probabilistic FP-Growth type algorithm and uses a proposed probabilistic frequent pattern tree (Pro-FPTree) to avoid candidate generation. Finally, the application of GIM leads to GIM-PFIM; the fastest known algorithm for solving the PFIM problem. It achieves orders of magnitude improvements in space and time usage, and leads to an intuitive subspace and probability-vector based interpretation of PFIM.Knowledge Discovery in Datenbanken (KDD) ist der nicht-triviale Prozess, gültiges, neues, potentiell nützliches und letztendlich verständliches Wissen aus großen Datensätzen zu extrahieren. Der wichtigste Schritt im KDD Prozess ist die Anwendung effizienter Data Mining (DM) Algorithmen um interessante Muster ("Patterns") in Datensätzen zu finden. Diese Dissertation beschäftigt sich mit drei verwandten Themen: Generalised Interaction und Rule Mining, die Einbindung von statistischen Methoden in neue DM Algorithmen und Probabilistic Frequent Itemset Mining (PFIM) in unsicheren Daten. Eine Interaktion ("Interaction") beschreibt den Einfluss, den Variablen aufeinander haben. Interaktionsmining ist der Prozess, Strukturen zwischen Variablen zu finden, die Interaktionsmuster beschreiben. Diese werden gewöhnlicherweise als Mengen, Graphen oder Regeln repräsentiert. Interaktionen können komplex sein und sowohl positive als auch negative Beziehungen repräsentieren. Außerdem kann das Vorhandensein von Interaktionen andere Interaktionen oder Variablen beeinflussen. Interaktionen stellen in Bereichen wie Soziale Netzwerk Analyse, Marketing, Wissenschaft, E-commerce, Statistik und Finanz wertvolle Information dar. Viele DM Methoden können als Interaktionsmining betrachtet werden: Zum Beispiel Clustering, Frequent Itemset Mining, Assoziationsregeln, Klassifikationsregeln, Graph Mining, Flock Mining, usw. Interaktionsmining-Probleme können sehr unterschiedliche Semantik, Musterdefinitionen, Interessantheitsmaße und Datentypen erfordern. Interaktionsmining-Probleme auf breiter und abstrakter Basis effizient -- und im Idealfall effizienter als mit spezialisierten Methoden -- zu lösen, ist ein herausforderndes Problem. Diese Dissertation führt das Generalised Interaction Mining (GIM) und das Generalised Rule Mining (GRM) Problem ein und beschreibt Lösungen für diese. GIM und GRM benutzen ein effizientes und intuitives Berechnungsmodell, das einzig und allein auf vektorbasierten Funktionen beruht. Die Semantik der Interaktionen, ihre Interessantheitsmaße und die Datenarten, sind Komponenten in vektorisierten Frameworks. Die Frameworks ermöglichen die Trennung der Problemsemantik vom Algorithmus, so dass beide unabhängig voneinander geändert werden können. Die Entwicklung neuer Methoden wird dadurch erleichtert, da man sich völlig auf die Problemsemantik fokussieren kann und sich nicht mit der Entwicklung problemspezifischer Algorithmen befassen muss. Die Kodierung der Interaktionen als Vektoren im gesamten Raum (oder Teilraum) der Stichproben stellt eine intuitive geometrische Interpretation dar, die neuartige Methoden inspiriert. Die GRM- und GIM- Algorithmen haben lineare Laufzeit in der Anzahl der Interaktionen die geprüft werden müssen und sind somit optimal. Die Anwendung von GRM oder GIM in dieser Dissertation ermöglicht effiziente Lösungen für eine Reihe von Problemen, wie zum Beispiel Graph Mining, Aufzählungsmethoden, Itemset Mining, Clique Mining, ein Clusteringproblem, das Finden von komplexen und negativen Mustern, die Lösung von Optimierungsproblemen, Spatial Data Mining, probabilistisches Itemset Mining, probabilistisches Mining von Assoziationsregel, Selektion und Erzeugung von Features, Mining von Klassifikations- und Multiplikationsregel, u.v.m. Data Mining ist ein Verfahren, das Hypothesen produziert, indem es in großen Datensätzen Muster findet und damit für den Anwender neues und nützliches Wissen vorschlägt. Da die untersuchte Datenbank ein Resultat des datenerzeugenden Prozesses ist, sollten die gefundenen Muster Erkenntnisse über diesen Prozess liefern. Bei der Suche nach diesen Mustern macht ein DM Algorithmus zusätzliche Hypothesen, wenn Teile des Suchraums ausgeschlossen werden. Die folgenden Fragen sind dabei wichtig: "Findet der Algorithmus statistisch signifikante Muster?" und "Hat der Algorithmus während des Suchprozesses signifikante Entscheidungen getroffen?". Diese Fragen beeinflussen die Qualität der Muster und die Sicherheit die der Anwender in ihrer Benutzung haben kann. Da die Statistik auch eine Reihe von nützlichen Methoden bereitstellt, die für DM anwendbar sind, kombiniert diese Dissertation einige statistische Methoden mit neuen DM Algorithmen, insbesondere nicht-parametrische Signifikanztests und Korrelation. Diese Idee wird für die folgenden Probleme angewandt: Signifikante und "relatively class correlated" regelbasierte Klassifikation in unsymmetrischen Datensätzen, signifikantes Frequent Itemset Mining, Mining von komplizierten Korrelationsstrukturen zwischen Variablen zum Zweck der Featureselektion, Mining von korrelierten Multiplikationsregeln zum Zwecke des Interaktionsminings und Featureerzeugung und konjunktive Korrelationsregeln für die Klassifikation. Die Anwendung von GIM und GRM auf diese Probleme führt zu effizienten und intuitiven Lösungen. Frequent Itemset Mining (FIM) ist ein fundamentales Problem im Data Mining. Obwohl allgemein die Annahme gilt, dass in einer Transaktion enthaltene Items bekannt sind, sind die Daten in vielen Anwendungen unsicher oder probabilistisch. Beispiele sind das Hinzufügen von Rauschen zu Datenschutzzwecken, die Gruppierung von Datensätzen die zu geschätzten Kaufwahrscheinlichkeiten führen und Datensätze deren Herkunft von Natur aus unsicher sind. Die Berücksichtigung von unsicheren Datensätzen verhindert die Anwendung von traditionellen Methoden. Vor der Arbeit in dieser Dissertation wurden Itemsets gesucht, deren erwartetes Vorkommen hoch ist. Diese Methode produziert jedoch nur Schätzwerte, vernachlässigt die Wahrscheinlichkeitsverteilung der Vorkommen, bietet keine Sicherheit für die Genauigkeit der Ergebnisse und kann zu Szenarien führen in denen das Vorkommen als häufig eingestuft wird, obwohl die Wahrscheinlichkeit höher ist, dass sie nur selten vorkommen. Solche Ergebnisse sind natürlich unerwünscht. Diese Dissertation führt das Probabilistic Frequent Itemset Mining (PFIM) ein. Diese Lösung betrachtet Itemsets als interessant, wenn die Wahrscheinlichkeit groß ist, dass sie häufig vorkommen. Die Problemlösung besteht aus der Anwendung des Possible Worlds Models und dem vorgeschlagenen probabilistisches Framework für PFIM. Es werden neue und effiziente Methoden entwickelt um die Wahrscheinlichkeitsverteilung des Vorkommens und die Häufigkeitsverteilung eines Itemsets zu berechnen. Dazu werden die Poisson Binomial Recurrence, Generating Functions, oder eine normalverteilte Annäherung verwendet. Inkrementelle Methoden werden vorgeschlagen um Fragen wie "Finde die top-k Probabilistic Frequent Itemsets" zu beantworten. Mehrere PFIM Algorithmen werden entwickelt, wobei die Effizienz von Algorithmus zu Algorithmus steigt: ProApriori ist die erste Lösung für PFIM und basiert auf erzeugen und testen von Kandidaten. ProFP-Growth ist der erste probabilistische FP-Growth Algorithmus. Er schlägt einen Probabilistic Frequent Pattern Tree (Pro-FPTree) vor, der Kandidatenerzeugung überflüssig macht. Die Anwendung von GIM führt schließlich zu GIM-PFIM, dem schnellsten bekannten Algorithmus zur Lösung des PFIM Problems. Dieser Algorithmus resultiert in einem um Größenordnungen besseren Zeit- und Speicherbedarf, und führt zu einer intuitiven Interpretation von PFIM, basierend auf Unterräumen und Wahrscheinlichkeitsvektoren

    Mining probabilistic representative frequent patterns from uncertain data

    Full text link
    Copyright © SIAM. Probabilistic frequent pattern mining over uncertain data has received a great deal of attention recently due to the wide applications of uncertain data. Similar to its counterpart in deterministic databases, however, probabilistic frequent pattern mining suffers from the same problem of generating an exponential number of result patterns. The large number of discovered patterns hinders further evaluation and analysis, and calls for the need to find a small number of representative patterns to approximate all other patterns. This paper formally defines the problem of probabilistic representative frequent pattern (P-RFP) mining, which aims to find the minimal set of patterns with sufficiently high probability to represent all other patterns. The problem's bottleneck turns out to be checking whether a pattern can probabilistically represent another, which involves the computation of a joint probability of supports of two patterns. To address the problem, we propose a novel and efficient dynamic programming-based approach. Moreover, we have devised a set of effective optimization strategies to further improve the computation efficiency. Our experimental results demonstrate that the proposed P-RFP mining effectively reduces the size of probabilistic frequent patterns. Our proposed approach not only discovers the set of P-RFPs efficiently, but also restores the frequency probability information of patterns with an error guarantee

    Towards Efficient Sequential Pattern Mining in Temporal Uncertain Databases

    Get PDF
    Uncertain sequence databases are widely used to model data with inaccurate or imprecise timestamps in many real world applications. In this paper, we use uniform distributions to model uncertain timestamps and adopt possible world semantics to interpret temporal uncertain database. We design an incremental approach to manage temporal uncertainty efficiently, which is integrated into the classic pattern-growth SPM algorithm to mine uncertain sequential patterns. Extensive experiments prove that our algorithm performs well in both efficiency and scalability

    Frequent Itemset Mining from Databases Including One Evidential Attribute

    Full text link

    Sequential pattern mining with uncertain data

    Get PDF
    In recent years, a number of emerging applications, such as sensor monitoring systems, RFID networks and location based services, have led to the proliferation of uncertain data. However, traditional data mining algorithms are usually inapplicable in uncertain data because of its probabilistic nature. Uncertainty has to be carefully handled; otherwise, it might significantly downgrade the quality of underlying data mining applications. Therefore, we extend traditional data mining algorithms into their uncertain versions so that they still can produce accurate results. In particular, we use a motivating example of sequential pattern mining to illustrate how to incorporate uncertain information in the process of data mining. We use possible world semantics to interpret two typical types of uncertainty: the tuple-level existential uncertainty and the attribute-level temporal uncertainty. In an uncertain database, it is probabilistic that a pattern is frequent or not; thus, we define the concept of probabilistic frequent sequential patterns. And various algorithms are designed to mine probabilistic frequent patterns efficiently in uncertain databases. We also implement our algorithms on distributed computing platforms, such as MapReduce and Spark, so that they can be applied in large scale databases. Our work also includes uncertainty computation in supervised machine learning algorithms. We develop an artificial neural network to classify numeric uncertain data; and a Naive Bayesian classifier is designed for classifying categorical uncertain data streams. We also propose a discretization algorithm to pre-process numerical uncertain data, since many classifiers work with categoric data only. And experimental results in both synthetic and real-world uncertain datasets demonstrate that our methods are effective and efficient
    corecore