102,354 research outputs found

    Probabilistic machine learning and artificial intelligence.

    Get PDF
    How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learning is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines that learn from data acquired through experience. The probabilistic framework, which describes how to represent and manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning, robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and discusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization, data compression and automatic model discovery.The author acknowledges an EPSRC grant EP/I036575/1, the DARPA PPAML programme, a Google Focused Research Award for the Automatic Statistician and support from Microsoft Research.This is the author accepted manuscript. The final version is available from NPG at http://www.nature.com/nature/journal/v521/n7553/full/nature14541.html#abstract

    Advances in Artificial Intelligence: Models, Optimization, and Machine Learning

    Get PDF
    The present book contains all the articles accepted and published in the Special Issue “Advances in Artificial Intelligence: Models, Optimization, and Machine Learning” of the MDPI Mathematics journal, which covers a wide range of topics connected to the theory and applications of artificial intelligence and its subfields. These topics include, among others, deep learning and classic machine learning algorithms, neural modelling, architectures and learning algorithms, biologically inspired optimization algorithms, algorithms for autonomous driving, probabilistic models and Bayesian reasoning, intelligent agents and multiagent systems. We hope that the scientific results presented in this book will serve as valuable sources of documentation and inspiration for anyone willing to pursue research in artificial intelligence, machine learning and their widespread applications

    Exact ICL maximization in a non-stationary time extension of the latent block model for dynamic networks

    Get PDF
    The latent block model (LBM) is a flexible probabilistic tool to describe interactions between node sets in bipartite networks, but it does not account for interactions of time varying intensity between nodes in unknown classes. In this paper we propose a non stationary temporal extension of the LBM that clusters simultaneously the two node sets of a bipartite network and constructs classes of time intervals on which interactions are stationary. The number of clusters as well as the membership to classes are obtained by maximizing the exact complete-data integrated likelihood relying on a greedy search approach. Experiments on simulated and real data are carried out in order to assess the proposed methodology.Comment: European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Apr 2015, Bruges, Belgium. pp.225-230, 2015, Proceedings of the 23-th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2015

    Bankruptcy Prediction: A Comparison of Some Statistical and Machine Learning Techniques

    Get PDF
    We are interested in forecasting bankruptcies in a probabilistic way. Specifically, we compare the classification performance of several statistical and machine-learning techniques, namely discriminant analysis (Altman's Z-score), logistic regression, least-squares support vector machines and different instances of Gaussian processes (GP's) -that is GP's classifiers, Bayesian Fisher discriminant and Warped GP's. Our contribution to the field of computational finance is to introduce GP's as a potentially competitive probabilistic framework for bankruptcy prediction. Data from the repository of information of the US Federal Deposit Insurance Corporation is used to test the predictions.Bankruptcy prediction, Artificial intelligence, Supervised learning, Gaussian processes, Z-score.

    Probabilistic traffic breakdown forecasting through Bayesian approximation using variational LSTMs

    Get PDF
    Robust artificial intelligence models have been criticized for their lack of uncertainty control and inability to explain feature importance, which has limited their adoption. However, probabilistic machine learning and explainable artificial intelligence have shown great scientific and technical advances, and have slowly permeated other areas, such as Traffic Engineering. This thesis fulfils a literature gap related to probabilistic traffic breakdown forecasting. We propose a traffic breakdown probability calculation methodology based on probabilistic speed predictions. Since the probabilistic characteristic is absent in traditional formulations of neural networks, we suggest using Variational LSTMs to make the speed forecasts. This Recurrent Neural Network uses Dropout to produce a Bayesian approximation and generate probabilistic outputs. This thesis also investigates the effects of inclement weather on traffic breakdown probability and methods for identifying traffic breakdowns. The proposed methodology produces great control over the probability of congestion, which could not be achieved using deterministic models, resulting in important theoretical and practical contributions

    Introduction to the special issue on probability, logic and learning

    Get PDF
    Recently, the combination of probability, logic and learning has received considerable attention in the artificial intelligence and machine learning communities; see e.g. Getoor and Taskar (2007); De Raedt et al. (2008). Computational logic often plays a major role in these developments since it forms the theoretical backbone for much of the work in probabilistic programming and logical and relational learning. Contemporary work in this area is often application- and experiment-driven, but is also concerned with the theoretical foundations of formalisms and inference procedures and with advanced implementation technology that scales well
    • …
    corecore