3,403 research outputs found

    Probabilistic lane estimation for autonomous driving using basis curves

    Get PDF
    Lane estimation for autonomous driving can be formulated as a curve estimation problem, where local sensor data provides partial and noisy observations of spatial curves forming lane boundaries. The number of lanes to estimate are initially unknown and many observations may be outliers or false detections (due e.g. to shadows or non-boundary road paint). The challenges lie in detecting lanes when and where they exist, and updating lane estimates as new observations are made. This paper describes an efficient probabilistic lane estimation algorithm based on a novel curve representation. The key advance is a principled mechanism to describe many similar curves as variations of a single basis curve. Locally observed road paint and curb features are then fused to detect and estimate all nearby travel lanes. The system handles roads with complex multi-lane geometries and makes no assumptions about the position and orientation of the vehicle with respect to the roadway. We evaluate our algorithm using a ground truth dataset containing manually-labeled, fine-grained lane geometries for vehicle travel in two large and diverse datasets that include more than 300,000 images and 44 km of roadway. The results illustrate the capabilities of our algorithm for robust lane estimation in the face of challenging conditions and unknown roadways.United States. Defense Advanced Research Projects Agency (Urban Challenge, ARPA Order No. W369/00, Program Code DIRO, issued by DARPA/CMO under Contract No. HR0011-06-C-0149

    Learning to Segment and Represent Motion Primitives from Driving Data for Motion Planning Applications

    Full text link
    Developing an intelligent vehicle which can perform human-like actions requires the ability to learn basic driving skills from a large amount of naturalistic driving data. The algorithms will become efficient if we could decompose the complex driving tasks into motion primitives which represent the elementary compositions of driving skills. Therefore, the purpose of this paper is to segment unlabeled trajectory data into a library of motion primitives. By applying a probabilistic inference based on an iterative Expectation-Maximization algorithm, our method segments the collected trajectories while learning a set of motion primitives represented by the dynamic movement primitives. The proposed method utilizes the mutual dependencies between the segmentation and representation of motion primitives and the driving-specific based initial segmentation. By utilizing this mutual dependency and the initial condition, this paper presents how we can enhance the performance of both the segmentation and the motion primitive library establishment. We also evaluate the applicability of the primitive representation method to imitation learning and motion planning algorithms. The model is trained and validated by using the driving data collected from the Beijing Institute of Technology intelligent vehicle platform. The results show that the proposed approach can find the proper segmentation and establish the motion primitive library simultaneously

    Multi-Lane Perception Using Feature Fusion Based on GraphSLAM

    Full text link
    An extensive, precise and robust recognition and modeling of the environment is a key factor for next generations of Advanced Driver Assistance Systems and development of autonomous vehicles. In this paper, a real-time approach for the perception of multiple lanes on highways is proposed. Lane markings detected by camera systems and observations of other traffic participants provide the input data for the algorithm. The information is accumulated and fused using GraphSLAM and the result constitutes the basis for a multilane clothoid model. To allow incorporation of additional information sources, input data is processed in a generic format. Evaluation of the method is performed by comparing real data, collected with an experimental vehicle on highways, to a ground truth map. The results show that ego and adjacent lanes are robustly detected with high quality up to a distance of 120 m. In comparison to serial lane detection, an increase in the detection range of the ego lane and a continuous perception of neighboring lanes is achieved. The method can potentially be utilized for the longitudinal and lateral control of self-driving vehicles

    Improving Automated Driving through Planning with Human Internal States

    Full text link
    This work examines the hypothesis that partially observable Markov decision process (POMDP) planning with human driver internal states can significantly improve both safety and efficiency in autonomous freeway driving. We evaluate this hypothesis in a simulated scenario where an autonomous car must safely perform three lane changes in rapid succession. Approximate POMDP solutions are obtained through the partially observable Monte Carlo planning with observation widening (POMCPOW) algorithm. This approach outperforms over-confident and conservative MDP baselines and matches or outperforms QMDP. Relative to the MDP baselines, POMCPOW typically cuts the rate of unsafe situations in half or increases the success rate by 50%.Comment: Preprint before submission to IEEE Transactions on Intelligent Transportation Systems. arXiv admin note: text overlap with arXiv:1702.0085
    • …
    corecore