218 research outputs found

    Forecasting CO2 Sequestration with Enhanced Oil Recovery

    Get PDF
    The aim of carbon capture, utilization, and storage (CCUS) is to reduce the amount of CO2 released into the atmosphere and to mitigate its effects on climate change. Over the years, naturally occurring CO2 sources have been utilized in enhanced oil recovery (EOR) projects in the United States. This has presented an opportunity to supplement and gradually replace the high demand for natural CO2 sources with anthropogenic sources. There also exist incentives for operators to become involved in the storage of anthropogenic CO2 within partially depleted reservoirs, in addition to the incremental production oil revenues. These incentives include a wider availability of anthropogenic sources, the reduction of emissions to meet regulatory requirements, tax incentives in some jurisdictions, and favorable public relations. The United States Department of Energy has sponsored several Regional Carbon Sequestration Partnerships (RCSPs) through its Carbon Storage program which have conducted field demonstrations for both EOR and saline aquifer storage. Various research efforts have been made in the area of reservoir characterization, monitoring, verification and accounting, simulation, and risk assessment to ascertain long-term storage potential within the subject storage complex. This book is a collection of lessons learned through the RCSP program within the Southwest Region of the United States. The scope of the book includes site characterization, storage modeling, monitoring verification reporting (MRV), risk assessment and international case studies

    Quantification techniques for potential CO2 leakage from geological storage sites

    Get PDF
    AbstractCO2 storage monitoring programmes aim to demonstrate the effectiveness of the project in controlling atmospheric CO2 levels, by providing confidence in predictions of the long-term fate of stored CO2 and identifying and measuring any potentially harmful leaks to the environment. In addition, the EU Emissions Trading Scheme (ETS) treats leakages of stored CO2 from the geosphere in to the ocean or atmosphere as emissions, and as such they need to be accounted for. An escape of CO2 from storage may be detected through losses from the reservoir, or migration through the overburden, into shallow groundwater systems, through topsoil and into the atmosphere, or through a seabed into the water column. Various monitoring techniques can be deployed to detect and in some cases quantify leakage in each of these compartments. This paper presents a portfolio of monitoring methods that are appropriate for CO2 leakage quantification, with a view to minimising both uncertainties and costs

    Lessons Learned from Natural and Industrial Analogues for Storage of Carbon Dioxide in Deep Geological Formations

    Full text link
    corecore