1,031 research outputs found

    Real-time performance-focused on localisation techniques for autonomous vehicle: a review

    Get PDF

    Simultaneous Localization and Mapping (SLAM) for Autonomous Driving: Concept and Analysis

    Get PDF
    The Simultaneous Localization and Mapping (SLAM) technique has achieved astonishing progress over the last few decades and has generated considerable interest in the autonomous driving community. With its conceptual roots in navigation and mapping, SLAM outperforms some traditional positioning and localization techniques since it can support more reliable and robust localization, planning, and controlling to meet some key criteria for autonomous driving. In this study the authors first give an overview of the different SLAM implementation approaches and then discuss the applications of SLAM for autonomous driving with respect to different driving scenarios, vehicle system components and the characteristics of the SLAM approaches. The authors then discuss some challenging issues and current solutions when applying SLAM for autonomous driving. Some quantitative quality analysis means to evaluate the characteristics and performance of SLAM systems and to monitor the risk in SLAM estimation are reviewed. In addition, this study describes a real-world road test to demonstrate a multi-sensor-based modernized SLAM procedure for autonomous driving. The numerical results show that a high-precision 3D point cloud map can be generated by the SLAM procedure with the integration of Lidar and GNSS/INS. Online four–five cm accuracy localization solution can be achieved based on this pre-generated map and online Lidar scan matching with a tightly fused inertial system

    Benchmarking Particle Filter Algorithms for Efficient Velodyne-Based Vehicle Localization

    Get PDF
    Keeping a vehicle well-localized within a prebuilt-map is at the core of any autonomous vehicle navigation system. In this work, we show that both standard SIR sampling and rejection-based optimal sampling are suitable for efficient (10 to 20 ms) real-time pose tracking without feature detection that is using raw point clouds from a 3D LiDAR. Motivated by the large amount of information captured by these sensors, we perform a systematic statistical analysis of how many points are actually required to reach an optimal ratio between efficiency and positioning accuracy. Furthermore, initialization from adverse conditions, e.g., poor GPS signal in urban canyons, we also identify the optimal particle filter settings required to ensure convergence. Our findings include that a decimation factor between 100 and 200 on incoming point clouds provides a large savings in computational cost with a negligible loss in localization accuracy for a VLP-16 scanner. Furthermore, an initial density of ∼2 particles/m 2 is required to achieve 100% convergence success for large-scale (∼100,000 m 2 ), outdoor global localization without any additional hint from GPS or magnetic field sensors. All implementations have been released as open-source software

    Contribution à la localisation de véhicules intelligents à partir de marquage routier

    Get PDF
    Autonomous Vehicles (AV) applications and Advanced Driving Assistance Systems (ADAS) relay in scene understanding processes allowing high level systems to carry out decision marking. For such systems, the localization of a vehicle evolving in a structured dynamic environment constitutes a complex problem of crucial importance. Our research addresses scene structure detection, localization and error modeling. Taking into account the large functional spectrum of vision systems, the accessibility of Open Geographical Information Systems (GIS) and the widely presence of Global Positioning Systems (GPS) onboard vehicles, we study the performance and the reliability of a vehicle localization method combining such information sources. Monocular vision–based lane marking detection provides key information about the scene structure. Using an enhanced multi-kernel framework with hierarchical weights, the proposed parametric method performs, in real time, the detection and tracking of the ego-lane marking. A self-assessment indicator quantifies the confidence of this information source. We conduct our investigations in a localization system which tightly couples GPS, GIS and lane makings in the probabilistic framework of Particle Filter (PF). To this end, it is proposed the use of lane markings not only during the map-matching process but also to model the expected ego-vehicle motion. The reliability of the localization system, in presence of unusual errors from the different information sources, is enhanced by taking into account different confidence indicators. Such a mechanism is later employed to identify error sources. This research concludes with an experimental validation in real driving situations of the proposed methods. They were tested and its performance was quantified using an experimental vehicle and publicly available datasets.Les applications pour véhicules autonomes et les systèmes d’aide avancée à la conduite (Advanced Driving Assistance Systems - ADAS) mettent en oeuvre des processus permettant à des systèmes haut niveau de réaliser une prise de décision. Pour de tels systèmes, la connaissance du positionnement précis (ou localisation) du véhicule dans son environnement est un pré-requis nécessaire. Cette thèse s’intéresse à la détection de la structure de scène, au processus de localisation ainsi qu’à la modélisation d’erreurs. A partir d’un large spectre fonctionnel de systèmes de vision, de l’accessibilité d’un système de cartographie ouvert (Open Geographical Information Systems - GIS) et de la large diffusion des systèmes de positionnement dans les véhicules (Global Positioning System - GPS), cette thèse étudie la performance et la fiabilité d’une méthode de localisation utilisant ces différentes sources. La détection de marquage sur la route réalisée par caméra monoculaire est le point de départ permettant de connaître la structure de la scène. En utilisant, une détection multi-noyau avec pondération hiérarchique, la méthode paramétrique proposée effectue la détection et le suivi des marquages sur la voie du véhicule en temps réel. La confiance en cette source d’information a été quantifiée par un indicateur de vraisemblance. Nous proposons ensuite un système de localisation qui fusionne des informations de positionnement (GPS), la carte (GIS) et les marquages détectés précédemment dans un cadre probabiliste basé sur un filtre particulaire. Pour ce faire, nous proposons d’utiliser les marquages détectés non seulement dans l’étape de mise en correspondance des cartes mais aussi dans la modélisation de la trajectoire attendue du véhicule. La fiabilité du système de localisation, en présence d’erreurs inhabituelles dans les différentes sources d’information, est améliorée par la prise en compte de différents indicateurs de confiance. Ce mécanisme est par la suite utilisé pour identifier les sources d’erreur. Cette thèse se conclut par une validation expérimentale des méthodes proposées dans des situations réelles de conduite. Leurs performances ont été quantifiées en utilisant un véhicule expérimental et des données en libre accès sur internet

    A dynamic two-dimensional (D2D) weight-based map-matching algorithm

    Get PDF
    Existing map-Matching (MM) algorithms primarily localize positioning fixes along the centerline of a road and have largely ignored road width as an input. Consequently, vehicle lane-level localization, which is essential for stringent Intelligent Transport System (ITS) applications, seems difficult to accomplish, especially with the positioning data from low-cost GPS sensors. This paper aims to address this limitation by developing a new dynamic two-dimensional (D2D) weight-based MM algorithm incorporating dynamic weight coefficients and road width. To enable vehicle lane-level localization, a road segment is virtually expressed as a matrix of homogeneous grids with reference to a road centerline. These grids are then used to map-match positioning fixes as opposed to matching on a road centerline as carried out in traditional MM algorithms. In this developed algorithm, vehicle location identification on a road segment is based on the total weight score which is a function of four different weights: (i) proximity, (ii) kinematic, (iii) turn-intent prediction, and (iv) connectivity. Different parameters representing network complexity and positioning quality are used to assign the relative importance to different weight scores by employing an adaptive regression method. To demonstrate the transferability of the developed algorithm, it was tested by using 5,830 GPS positioning points collected in Nottingham, UK and 7,414 GPS positioning points collected in Mumbai and Pune, India. The developed algorithm, using stand-alone GPS position fixes, identifies the correct links 96.1% (for the Nottingham data) and 98.4% (for the Mumbai-Pune data) of the time. In terms of the correct lane identification, the algorithm was found to provide the accurate matching for 84% (Nottingham) and 79% (Mumbai-Pune) of the fixes obtained by stand-alone GPS. Using the same methodology adopted in this study, the accuracy of the lane identification could further be enhanced if the localization data from additional sensors (e.g. gyroscope) are utilized. ITS industry and vehicle manufacturers can implement this D2D map-matching algorithm for liability critical and in-vehicle information systems and services such as advanced driver assistant systems (ADAS)

    Long-Term Localization for Self-Driving Cars

    Get PDF
    Long-term localization is hard due to changing conditions, while relative localization within time sequences is much easier. To achieve long-term localization in a sequential setting, such as, for self-driving cars, relative localization should be used to the fullest extent, whenever possible.This thesis presents solutions and insights both for long-term sequential visual localization, and localization using global navigational satellite systems (GNSS), that push us closer to the goal of accurate and reliable localization for self-driving cars. It addresses the question: How to achieve accurate and robust, yet cost-effective long-term localization for self-driving cars?Starting in this question, the thesis explores how existing sensor suites for advanced driver-assistance systems (ADAS) can be used most efficiently, and how landmarks in maps can be recognized and used for localization even after severe changes in appearance. The findings show that:* State-of-the-art ADAS sensors are insufficient to meet the requirements for localization of a self-driving car in less than ideal conditions.GNSS and visual localization are identified as areas to improve.\ua0* Highly accurate relative localization with no convergence delay is possible by using time relative GNSS observations with a single band receiver, and no base stations.\ua0* Sequential semantic localization is identified as a promising focus point for further research based on a benchmark study comparing state-of-the-art visual localization methods in challenging autonomous driving scenarios including day-to-night and seasonal changes.\ua0* A novel sequential semantic localization algorithm improves accuracy while significantly reducing map size compared to traditional methods based on matching of local image features.\ua0* Improvements for semantic segmentation in challenging conditions can be made efficiently by automatically generating pixel correspondences between images from a multitude of conditions and enforcing a consistency constraint during training.\ua0* A segmentation algorithm with automatically defined and more fine-grained classes improves localization performance.\ua0* The performance advantage seen in single image localization for modern local image features, when compared to traditional ones, is all but erased when considering sequential data with odometry, thus, encouraging to focus future research more on sequential localization, rather than pure single image localization

    Vehicle localization with enhanced robustness for urban automated driving

    Get PDF

    Perception for autonomous driving in urban road environment

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore