140 research outputs found

    SNRA: A Spintronic Neuromorphic Reconfigurable Array for In-Circuit Training and Evaluation of Deep Belief Networks

    Full text link
    In this paper, a spintronic neuromorphic reconfigurable Array (SNRA) is developed to fuse together power-efficient probabilistic and in-field programmable deterministic computing during both training and evaluation phases of restricted Boltzmann machines (RBMs). First, probabilistic spin logic devices are used to develop an RBM realization which is adapted to construct deep belief networks (DBNs) having one to three hidden layers of size 10 to 800 neurons each. Second, we design a hardware implementation for the contrastive divergence (CD) algorithm using a four-state finite state machine capable of unsupervised training in N+3 clocks where N denotes the number of neurons in each RBM. The functionality of our proposed CD hardware implementation is validated using ModelSim simulations. We synthesize the developed Verilog HDL implementation of our proposed test/train control circuitry for various DBN topologies where the maximal RBM dimensions yield resource utilization ranging from 51 to 2,421 lookup tables (LUTs). Next, we leverage spin Hall effect (SHE)-magnetic tunnel junction (MTJ) based non-volatile LUTs circuits as an alternative for static random access memory (SRAM)-based LUTs storing the deterministic logic configuration to form a reconfigurable fabric. Finally, we compare the performance of our proposed SNRA with SRAM-based configurable fabrics focusing on the area and power consumption induced by the LUTs used to implement both CD and evaluation modes. The results obtained indicate more than 80% reduction in combined dynamic and static power dissipation, while achieving at least 50% reduction in device count.Comment: 8 page

    Design of a Low Voltage Analog-to-Digital Converter using Voltage Controlled Stochastic Switching of Low Barrier Nanomagnets

    Full text link
    The inherent stochasticity in many nano-scale devices makes them prospective candidates for low-power computations. Such devices have been demonstrated to exhibit probabilistic switching between two stable states to achieve stochastic behavior. Recently, superparamagnetic nanomagnets (having low energy barrier EB ∼\sim 1kT) have shown promise of achieving stochastic switching at GHz rates, with very low currents. On the other hand, voltage-controlled switching of nanomagnets through the Magneto-electric (ME) effect has shown further improvements in energy efficiency. In this simulation paper, we first analyze the stochastic switching characteristics of such super-paramagnetic nanomagnets in a voltage-controlled spintronic device. We study the influence of external bias on the switching behavior. Subsequently, we show that our proposed device leverages the voltage controlled stochasticity in performing low-voltage 8-bit analog to digital conversions. This eliminates the need for comparators, unlike the Complementary Metal-Oxide Semiconductor (CMOS)-based flash Analog-to-Digital converters (ADC). This device allows for a simple and compact design which can potentially be applied in implementing sensors which desire low voltage conversions.Comment: 11 pages, 6 figure

    Hardware implementation of Bayesian network building blocks with stochastic spintronic devices

    Full text link
    Bayesian networks are powerful statistical models to understand causal relationships in real-world probabilistic problems such as diagnosis, forecasting, computer vision, etc. For systems that involve complex causal dependencies among many variables, the complexity of the associated Bayesian networks become computationally intractable. As a result, direct hardware implementation of these networks is one promising approach to reducing power consumption and execution time. However, the few hardware implementations of Bayesian networks presented in literature rely on deterministic CMOS devices that are not efficient in representing the inherently stochastic variables in a Bayesian network. This work presents an experimental demonstration of a Bayesian network building block implemented with naturally stochastic spintronic devices. These devices are based on nanomagnets with perpendicular magnetic anisotropy, initialized to their hard axes by the spin orbit torque from a heavy metal under-layer utilizing the giant spin Hall effect, enabling stochastic behavior. We construct an electrically interconnected network of two stochastic devices and manipulate the correlations between their states by changing connection weights and biases. By mapping given conditional probability tables to the circuit hardware, we demonstrate that any two node Bayesian networks can be implemented by our stochastic network. We then present the stochastic simulation of an example case of a four node Bayesian network using our proposed device, with parameters taken from the experiment. We view this work as a first step towards the large scale hardware implementation of Bayesian networks.Comment: 9 pages, 4 figure

    Probabilistic Deep Spiking Neural Systems Enabled by Magnetic Tunnel Junction

    Full text link
    Deep Spiking Neural Networks are becoming increasingly powerful tools for cognitive computing platforms. However, most of the existing literature on such computing models are developed with limited insights on the underlying hardware implementation, resulting in area and power expensive designs. Although several neuromimetic devices emulating neural operations have been proposed recently, their functionality has been limited to very simple neural models that may prove to be inefficient at complex recognition tasks. In this work, we venture into the relatively unexplored area of utilizing the inherent device stochasticity of such neuromimetic devices to model complex neural functionalities in a probabilistic framework in the time domain. We consider the implementation of a Deep Spiking Neural Network capable of performing high accuracy and low latency classification tasks where the neural computing unit is enabled by the stochastic switching behavior of a Magnetic Tunnel Junction. Simulation studies indicate an energy improvement of 20×20\times over a baseline CMOS design in 45nm45nm technology.Comment: The article will appear in a future issue of IEEE Transactions on Electron Device

    Spin torque building blocks

    Full text link
    The discovery of the spin torque effect has made magnetic nanodevices realistic candidates for active elements of memory devices and applications. Magnetoresistive effects allow the read-out of increasingly small magnetic bits, and the spin torque provides an efficient tool to manipulate - precisely, rapidly and at low energy cost - the magnetic state, which is in turn the central information medium of spintronic devices. By keeping the same magnetic stack, but by tuning a device's shape and bias conditions, the spin torque can be engineered to build a variety of advanced magnetic nanodevices. Here we show that by assembling these nanodevices as building blocks with different functionalities, novel types of computing architectures can be envisisaged. We focus in particular on recent concepts such as magnonics and spintronic neural networks

    The promise of spintronics for unconventional computing

    Full text link
    Novel computational paradigms may provide the blueprint to help solving the time and energy limitations that we face with our modern computers, and provide solutions to complex problems more efficiently (with reduced time, power consumption and/or less device footprint) than is currently possible with standard approaches. Spintronics offers a promising basis for the development of efficient devices and unconventional operations for at least three main reasons: (i) the low-power requirements of spin-based devices, i.e., requiring no standby power for operation and the possibility to write information with small dynamic energy dissipation, (ii) the strong nonlinearity, time nonlocality, and/or stochasticity that spintronic devices can exhibit, and (iii) their compatibility with CMOS logic manufacturing processes. At the same time, the high endurance and speed of spintronic devices means that they can be rewritten or reconfigured frequently over the lifetime of a circuit, a feature that is essential in many emerging computing concepts. In this perspective, we will discuss how spintronics may aid in the realization of efficient devices primarily based on magnetic tunnel junctions and how those devices can impact in the development of three unconventional computing paradigms, namely, reservoir computing, probabilistic computing and memcomputing that in our opinion may be used to address some limitations of modern computers, providing a realistic path to intelligent hybrid CMOS-spintronic systems.Comment: 18 pages and 4 figure

    From materials to systems: a multiscale analysis of nanomagnetic switching

    Full text link
    With the increasing demand for low-power electronics, nanomagnetic devices have emerged as strong potential candidates to complement present day transistor technology. A variety of novel switching effects such as spin torque and giant spin Hall offer scalable ways to manipulate nano-sized magnets. However, the low intrinsic energy cost of switching spins is often compromised by the energy consumed in the overhead circuitry in creating the necessary switching fields. Scaling brings in added concerns such as the ability to distinguish states (readability) and to write information without spontaneous backflips (reliability). A viable device must ultimately navigate a complex multi-dimensional material and design space defined by volume, energy budget, speed and a target read-write-retention error. In this paper, we review the major challenges facing nanomagnetic devices and present a multi-scale computational framework to explore possible innovations at different levels (material, device, or circuit), along with a holistic understanding of their overall energy-delay-reliability tradeoff.Comment: Submitted to Journal of Computational Electronics Special Issue "Computational Electronics of Emerging Memory Elements

    Weighted p-bits for FPGA implementation of probabilistic circuits

    Full text link
    Probabilistic spin logic (PSL) is a recently proposed computing paradigm based on unstable stochastic units called probabilistic bits (p-bits) that can be correlated to form probabilistic circuits (p-circuits). These p-circuits can be used to solve problems of optimization, inference and also to implement precise Boolean functions in an "inverted" mode, where a given Boolean circuit can operate in reverse to find the input combinations that are consistent with a given output. In this paper we present a scalable FPGA implementation of such invertible p-circuits. We implement a "weighted" p-bit that combines stochastic units with localized memory structures. We also present a generalized tile of weighted p-bits to which a large class of problems beyond invertible Boolean logic can be mapped, and how invertibility can be applied to interesting problems such as the NP-complete Subset Sum Problem by solving a small instance of this problem in hardware

    Spintronics based Stochastic Computing for Efficient Bayesian Inference System

    Full text link
    Bayesian inference is an effective approach for solving statistical learning problems especially with uncertainty and incompleteness. However, inference efficiencies are physically limited by the bottlenecks of conventional computing platforms. In this paper, an emerging Bayesian inference system is proposed by exploiting spintronics based stochastic computing. A stochastic bitstream generator is realized as the kernel components by leveraging the inherent randomness of spintronics devices. The proposed system is evaluated by typical applications of data fusion and Bayesian belief networks. Simulation results indicate that the proposed approach could achieve significant improvement on inference efficiencies in terms of power consumption and inference speed.Comment: accepted by ASPDAC 2018 conferenc

    Stochastic Spin-Orbit Torque Devices as Elements for Bayesian Inference

    Full text link
    Probabilistic inference from real-time input data is becoming increasingly popular and may be one of the potential pathways at enabling cognitive intelligence. As a matter of fact, preliminary research has revealed that stochastic functionalities also underlie the spiking behavior of neurons in cortical microcircuits of the human brain. In tune with such observations, neuromorphic and other unconventional computing platforms have recently started adopting the usage of computational units that generate outputs probabilistically, depending on the magnitude of the input stimulus. In this work, we experimentally demonstrate a spintronic device that offers a direct mapping to the functionality of such a controllable stochastic switching element. We show that the probabilistic switching of Ta/CoFeB/MgO heterostructures in presence of spin-orbit torque and thermal noise can be harnessed to enable probabilistic inference in a plethora of unconventional computing scenarios. This work can potentially pave the way for hardware that directly mimics the computational units of Bayesian inference
    • …
    corecore