16,036 research outputs found

    pTNoC: Probabilistically time-analyzable tree-based NoC for mixed-criticality systems

    Get PDF
    The use of networks-on-chip (NoC) in real-time safety-critical multicore systems challenges deriving tight worst-case execution time (WCET) estimates. This is due to the complexities in tightly upper-bounding the contention in the access to the NoC among running tasks. Probabilistic Timing Analysis (PTA) is a powerful approach to derive WCET estimates on relatively complex processors. However, so far it has only been tested on small multicores comprising an on-chip bus as communication means, which intrinsically does not scale to high core counts. In this paper we propose pTNoC, a new tree-based NoC design compatible with PTA requirements and delivering scalability towards medium/large core counts. pTNoC provides tight WCET estimates by means of asymmetric bandwidth guarantees for mixed-criticality systems with negligible impact on average performance. Finally, our implementation results show the reduced area and power costs of the pTNoC.The research leading to these results has received funding from the European Community’s Seventh Framework Programme [FP7/2007-2013] under the PROXIMA Project (www.proxima-project.eu), grant agreement no 611085. This work has also been partially supported by the Spanish Ministry of Science and Innovation under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Mladen Slijepcevic is funded by the Obra Social Fundación la Caixa under grant Doctorado “la Caixa” - Severo Ochoa. Carles Hern´andez is jointly funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER funds through grant TIN2014-60404-JIN. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Topology Discovery of Sparse Random Graphs With Few Participants

    Get PDF
    We consider the task of topology discovery of sparse random graphs using end-to-end random measurements (e.g., delay) between a subset of nodes, referred to as the participants. The rest of the nodes are hidden, and do not provide any information for topology discovery. We consider topology discovery under two routing models: (a) the participants exchange messages along the shortest paths and obtain end-to-end measurements, and (b) additionally, the participants exchange messages along the second shortest path. For scenario (a), our proposed algorithm results in a sub-linear edit-distance guarantee using a sub-linear number of uniformly selected participants. For scenario (b), we obtain a much stronger result, and show that we can achieve consistent reconstruction when a sub-linear number of uniformly selected nodes participate. This implies that accurate discovery of sparse random graphs is tractable using an extremely small number of participants. We finally obtain a lower bound on the number of participants required by any algorithm to reconstruct the original random graph up to a given edit distance. We also demonstrate that while consistent discovery is tractable for sparse random graphs using a small number of participants, in general, there are graphs which cannot be discovered by any algorithm even with a significant number of participants, and with the availability of end-to-end information along all the paths between the participants.Comment: A shorter version appears in ACM SIGMETRICS 2011. This version is scheduled to appear in J. on Random Structures and Algorithm

    Dependability checking with StoCharts: Is train radio reliable enough for trains?

    Get PDF
    Performance, dependability and quality of service (QoS) are prime aspects of the UML modelling domain. To capture these aspects effectively in the design phase, we have recently proposed STOCHARTS, a conservative extension of UML statechart diagrams. In this paper, we apply the STOCHART formalism to a safety critical design problem. We model a part of the European Train Control System specification, focusing on the risks of wireless communication failures in future high-speed cross-European trains. Stochastic model checking with the model checker PROVER enables us to derive constraints under which the central quality requirements are satisfied by the STOCHART model. The paper illustrates the flexibility and maturity of STOCHARTS to model real problems in safety critical system design

    An Analytical Solution for Probabilistic Guarantees of Reservation Based Soft Real-Time Systems

    Full text link
    We show a methodology for the computation of the probability of deadline miss for a periodic real-time task scheduled by a resource reservation algorithm. We propose a modelling technique for the system that reduces the computation of such a probability to that of the steady state probability of an infinite state Discrete Time Markov Chain with a periodic structure. This structure is exploited to develop an efficient numeric solution where different accuracy/computation time trade-offs can be obtained by operating on the granularity of the model. More importantly we offer a closed form conservative bound for the probability of a deadline miss. Our experiments reveal that the bound remains reasonably close to the experimental probability in one real-time application of practical interest. When this bound is used for the optimisation of the overall Quality of Service for a set of tasks sharing the CPU, it produces a good sub-optimal solution in a small amount of time.Comment: IEEE Transactions on Parallel and Distributed Systems, Volume:27, Issue: 3, March 201

    A comparative reliability analysis of ETCS train radio communications

    Get PDF
    StoCharts have been proposed as a UML statechart extension for performance and dependability evaluation, and were applied in the context of train radio reliability assessment to show the principal tractability of realistic cases with this approach. In this paper, we extend on this bare feasibility result in two important directions. First, we sketch the cornerstones of a mechanizable translation of StoCharts to MoDeST. The latter is a process algebra-based formalism supported by the Motor/Möbius tool tandem. Second, we exploit this translation for a detailed analysis of the train radio case study

    From StoCharts to MoDeST: a comparative reliability analysis of train radio communications

    Get PDF
    StoCharts have been proposed as a UML statechart extension for performance and dependability evaluation, and have been applied in the context of train radio reliability assessment to show the principal tractability of realistic cases with this approach. In this paper, we extend on this bare feasibility result in two important directions. First, we sketch the cornerstones of a mechanizable translation of StoCharts to MoDeST. The latter is a process algebra-based formalism supported by the Motor/Möbius tool tandem. Second, we exploit this translation for a detailed analysis of the train radio case study

    Statistical Delay Bound for WirelessHART Networks

    Full text link
    In this paper we provide a performance analysis framework for wireless industrial networks by deriving a service curve and a bound on the delay violation probability. For this purpose we use the (min,x) stochastic network calculus as well as a recently presented recursive formula for an end-to-end delay bound of wireless heterogeneous networks. The derived results are mapped to WirelessHART networks used in process automation and were validated via simulations. In addition to WirelessHART, our results can be applied to any wireless network whose physical layer conforms the IEEE 802.15.4 standard, while its MAC protocol incorporates TDMA and channel hopping, like e.g. ISA100.11a or TSCH-based networks. The provided delay analysis is especially useful during the network design phase, offering further research potential towards optimal routing and power management in QoS-constrained wireless industrial networks.Comment: Accepted at PE-WASUN 201

    Random Modulo: A new processor cache design for real-time critical systems

    Get PDF
    Cache memories have a huge impact on software's worst-case execution time (WCET). While enabling the seamless use of caches is key to provide the increasing levels of (guaranteed) performance required by automotive software, caches complicate timing analysis. In the context of Measurement-Based Probabilistic Timing Analysis (MBPTA) - a promising technique to ease timing analyis of complex hardware - we propose Random Modulo (RM), a new cache design that provides the probabilistic behavior required by MBPTA and with the following advantages over existing MBPTA-compliant cache designs: (i) an outstanding reduction in WCET estimates, (ii) lower latency and area overhead, and (iii) competitive average performance w.r.t conventional caches.Peer ReviewedPostprint (author's final draft

    Robust H∞ control with missing measurements and time delays

    Get PDF
    Copyright [2007] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this technical note, the robust control problem is investigated for a class of stochastic uncertain discrete time-delay systems with missing measurements. The parameter uncertainties enter into the state matrices, and the missing measurements are described by a binary switching sequence satisfying a conditional probability distribution. The purpose of the problem is to design a full-order dynamic feedback controller such that, for all possible missing observations and admissible parameter uncertainties, the closed-loop system is asymptotically mean-square stable and satisfies the prescribed performance constraint. Delay-dependent conditions are derived under which the desired solution exists, and the controller parameters are designed by solving a linear matrix inequality (LMI). A numerical example is provided to illustrate the usefulness of the proposed design method
    corecore