14,328 research outputs found

    Treebank-based acquisition of a Chinese lexical-functional grammar

    Get PDF
    Scaling wide-coverage, constraint-based grammars such as Lexical-Functional Grammars (LFG) (Kaplan and Bresnan, 1982; Bresnan, 2001) or Head-Driven Phrase Structure Grammars (HPSG) (Pollard and Sag, 1994) from fragments to naturally occurring unrestricted text is knowledge-intensive, time-consuming and (often prohibitively) expensive. A number of researchers have recently presented methods to automatically acquire wide-coverage, probabilistic constraint-based grammatical resources from treebanks (Cahill et al., 2002, Cahill et al., 2003; Cahill et al., 2004; Miyao et al., 2003; Miyao et al., 2004; Hockenmaier and Steedman, 2002; Hockenmaier, 2003), addressing the knowledge acquisition bottleneck in constraint-based grammar development. Research to date has concentrated on English and German. In this paper we report on an experiment to induce wide-coverage, probabilistic LFG grammatical and lexical resources for Chinese from the Penn Chinese Treebank (CTB) (Xue et al., 2002) based on an automatic f-structure annotation algorithm. Currently 96.751% of the CTB trees receive a single, covering and connected f-structure, 0.112% do not receive an f-structure due to feature clashes, while 3.137% are associated with multiple f-structure fragments. From the f-structure-annotated CTB we extract a total of 12975 lexical entries with 20 distinct subcategorisation frame types. Of these 3436 are verbal entries with a total of 11 different frame types. We extract a number of PCFG-based LFG approximations. Currently our best automatically induced grammars achieve an f-score of 81.57% against the trees in unseen articles 301-325; 86.06% f-score (all grammatical functions) and 73.98% (preds-only) against the dependencies derived from the f-structures automatically generated for the original trees in 301-325 and 82.79% (all grammatical functions) and 67.74% (preds-only) against the dependencies derived from the manually annotated gold-standard f-structures for 50 trees randomly selected from articles 301-325

    Exploiting multi-word units in history-based probabilistic generation

    Get PDF
    We present a simple history-based model for sentence generation from LFG f-structures, which improves on the accuracy of previous models by breaking down PCFG independence assumptions so that more f-structure conditioning context is used in the prediction of grammar rule expansions. In addition, we present work on experiments with named entities and other multi-word units, showing a statistically significant improvement of generation accuracy. Tested on section 23 of the PennWall Street Journal Treebank, the techniques described in this paper improve BLEU scores from 66.52 to 68.82, and coverage from 98.18% to 99.96%

    Data-Oriented Language Processing. An Overview

    Full text link
    During the last few years, a new approach to language processing has started to emerge, which has become known under various labels such as "data-oriented parsing", "corpus-based interpretation", and "tree-bank grammar" (cf. van den Berg et al. 1994; Bod 1992-96; Bod et al. 1996a/b; Bonnema 1996; Charniak 1996a/b; Goodman 1996; Kaplan 1996; Rajman 1995a/b; Scha 1990-92; Sekine & Grishman 1995; Sima'an et al. 1994; Sima'an 1995-96; Tugwell 1995). This approach, which we will call "data-oriented processing" or "DOP", embodies the assumption that human language perception and production works with representations of concrete past language experiences, rather than with abstract linguistic rules. The models that instantiate this approach therefore maintain large corpora of linguistic representations of previously occurring utterances. When processing a new input utterance, analyses of this utterance are constructed by combining fragments from the corpus; the occurrence-frequencies of the fragments are used to estimate which analysis is the most probable one. In this paper we give an in-depth discussion of a data-oriented processing model which employs a corpus of labelled phrase-structure trees. Then we review some other models that instantiate the DOP approach. Many of these models also employ labelled phrase-structure trees, but use different criteria for extracting fragments from the corpus or employ different disambiguation strategies (Bod 1996b; Charniak 1996a/b; Goodman 1996; Rajman 1995a/b; Sekine & Grishman 1995; Sima'an 1995-96); other models use richer formalisms for their corpus annotations (van den Berg et al. 1994; Bod et al., 1996a/b; Bonnema 1996; Kaplan 1996; Tugwell 1995).Comment: 34 pages, Postscrip

    Wide-coverage deep statistical parsing using automatic dependency structure annotation

    Get PDF
    A number of researchers (Lin 1995; Carroll, Briscoe, and Sanfilippo 1998; Carroll et al. 2002; Clark and Hockenmaier 2002; King et al. 2003; Preiss 2003; Kaplan et al. 2004;Miyao and Tsujii 2004) have convincingly argued for the use of dependency (rather than CFG-tree) representations for parser evaluation. Preiss (2003) and Kaplan et al. (2004) conducted a number of experiments comparing “deep” hand-crafted wide-coverage with “shallow” treebank- and machine-learning based parsers at the level of dependencies, using simple and automatic methods to convert tree output generated by the shallow parsers into dependencies. In this article, we revisit the experiments in Preiss (2003) and Kaplan et al. (2004), this time using the sophisticated automatic LFG f-structure annotation methodologies of Cahill et al. (2002b, 2004) and Burke (2006), with surprising results. We compare various PCFG and history-based parsers (based on Collins, 1999; Charniak, 2000; Bikel, 2002) to find a baseline parsing system that fits best into our automatic dependency structure annotation technique. This combined system of syntactic parser and dependency structure annotation is compared to two hand-crafted, deep constraint-based parsers (Carroll and Briscoe 2002; Riezler et al. 2002). We evaluate using dependency-based gold standards (DCU 105, PARC 700, CBS 500 and dependencies for WSJ Section 22) and use the Approximate Randomization Test (Noreen 1989) to test the statistical significance of the results. Our experiments show that machine-learning-based shallow grammars augmented with sophisticated automatic dependency annotation technology outperform hand-crafted, deep, widecoverage constraint grammars. Currently our best system achieves an f-score of 82.73% against the PARC 700 Dependency Bank (King et al. 2003), a statistically significant improvement of 2.18%over the most recent results of 80.55%for the hand-crafted LFG grammar and XLE parsing system of Riezler et al. (2002), and an f-score of 80.23% against the CBS 500 Dependency Bank (Carroll, Briscoe, and Sanfilippo 1998), a statistically significant 3.66% improvement over the 76.57% achieved by the hand-crafted RASP grammar and parsing system of Carroll and Briscoe (2002)

    Precise n-gram Probabilities from Stochastic Context-free Grammars

    Full text link
    We present an algorithm for computing n-gram probabilities from stochastic context-free grammars, a procedure that can alleviate some of the standard problems associated with n-grams (estimation from sparse data, lack of linguistic structure, among others). The method operates via the computation of substring expectations, which in turn is accomplished by solving systems of linear equations derived from the grammar. We discuss efficient implementation of the algorithm and report our practical experience with it.Comment: 12 pages, to appear in ACL-9

    Treebank-based acquisition of wide-coverage, probabilistic LFG resources: project overview, results and evaluation

    Get PDF
    This paper presents an overview of a project to acquire wide-coverage, probabilistic Lexical-Functional Grammar (LFG) resources from treebanks. Our approach is based on an automatic annotation algorithm that annotates “raw” treebank trees with LFG f-structure information approximating to basic predicate-argument/dependency structure. From the f-structure-annotated treebank we extract probabilistic unification grammar resources. We present the annotation algorithm, the extraction of lexical information and the acquisition of wide-coverage and robust PCFG-based LFG approximations including long-distance dependency resolution. We show how the methodology can be applied to multilingual, treebank-based unification grammar acquisition. Finally we show how simple (quasi-)logical forms can be derived automatically from the f-structures generated for the treebank trees
    corecore