358 research outputs found

    Assistive Planning in Complex, Dynamic Environments: a Probabilistic Approach

    Full text link
    We explore the probabilistic foundations of shared control in complex dynamic environments. In order to do this, we formulate shared control as a random process and describe the joint distribution that governs its behavior. For tractability, we model the relationships between the operator, autonomy, and crowd as an undirected graphical model. Further, we introduce an interaction function between the operator and the robot, that we call "agreeability"; in combination with the methods developed in~\cite{trautman-ijrr-2015}, we extend a cooperative collision avoidance autonomy to shared control. We therefore quantify the notion of simultaneously optimizing over agreeability (between the operator and autonomy), and safety and efficiency in crowded environments. We show that for a particular form of interaction function between the autonomy and the operator, linear blending is recovered exactly. Additionally, to recover linear blending, unimodal restrictions must be placed on the models describing the operator and the autonomy. In turn, these restrictions raise questions about the flexibility and applicability of the linear blending framework. Additionally, we present an extension of linear blending called "operator biased linear trajectory blending" (which formalizes some recent approaches in linear blending such as~\cite{dragan-ijrr-2013}) and show that not only is this also a restrictive special case of our probabilistic approach, but more importantly, is statistically unsound, and thus, mathematically, unsuitable for implementation. Instead, we suggest a statistically principled approach that guarantees data is used in a consistent manner, and show how this alternative approach converges to the full probabilistic framework. We conclude by proving that, in general, linear blending is suboptimal with respect to the joint metric of agreeability, safety, and efficiency

    An innovative system to assist the mobility of people with motor disabilities

    Get PDF
    International audiencePeople with motor disabilities require assistance for navigating form one location to another. In order to improve the integration of wheelchair users into their daily life and work, we propose a real time adaptive planning algorithm for routing the user through an obstacle free optimal path. Our application is based on an augmented reality system for the assistance of wheelchair people (ARSAWP) and uses augmented reality (AR) smart glasses. The main goal is to support the development of indoor and outdoor navigation systems devoted to wheelchair users. In this paper we detail the design, the implementation and the evaluation of the proposed application, which was implemented in java for the Android operational system. Two types of database are used (local database and remote database). The information about navigation is displayed on AR glasses which give the user the possibility to interact with the system according to the external environment. The prototype is designed for use within the University of Lille campus

    Comparing shared control approaches for alternative interfaces: a wheelchair simulator experiment

    Get PDF
    Independent mobility is important for the self-esteem and well-being of people with mobility impairments. For people with severe disabilities, there is a body of research investigating how best to share control of motion between a person with disabilities and a "smart wheelchair". Traditionally in "shared control", the control law is a linear combination of the human's intended velocity and the path planner's velocity. However, this formulation of sharing control between a human and a machine does not guarantee safety on a theoretical level. To guarantee safety in formulating the blending of the human's input velocity and planner's velocity, we implement a practical form of probabilistic shared control formulated by Trautman. We tested this shared control by conducting experiments in a simulation where participants drive a wheelchair. The results of the experiment suggest probabilistic shared control has similar performance to linear blending in terms of significant reduction in number of collisions. However, for the sip-puff switch (a particularly difficult interface to use), probabilistic shared control yielded a greater reduction in collisions than linear blending

    Learning shared control by demonstration for personalized wheelchair assistance

    Get PDF
    An emerging research problem in assistive robotics is the design of methodologies that allow robots to provide personalized assistance to users. For this purpose, we present a method to learn shared control policies from demonstrations offered by a human assistant. We train a Gaussian process (GP) regression model to continuously regulate the level of assistance between the user and the robot, given the user's previous and current actions and the state of the environment. The assistance policy is learned after only a single human demonstration, i.e. in one-shot. Our technique is evaluated in a one-of-a-kind experimental study, where the machine-learned shared control policy is compared to human assistance. Our analyses show that our technique is successful in emulating human shared control, by matching the location and amount of offered assistance on different trajectories. We observed that the effort requirement of the users were comparable between human-robot and human-human settings. Under the learned policy, the jerkiness of the user's joystick movements dropped significantly, despite a significant increase in the jerkiness of the robot assistant's commands. In terms of performance, even though the robotic assistance increased task completion time, the average distance to obstacles stayed in similar ranges to human assistance

    Learning from demonstration for locally assistive mobility aids

    Full text link
    © 2019, The Author(s). Active assistive systems for mobility aids are largely restricted to environments mapped a-priori, while passive assistance primarily provides collision mitigation and other hand-crafted behaviors in the platform’s immediate space. This paper presents a framework providing active short-term assistance, combining the freedom of location independence with the intelligence of active assistance. Demonstration data consisting of on-board sensor data and driving inputs is gathered from an able-bodied expert maneuvring the mobility aid around a generic interior setting, and used in constructing a probabilistic intention model built with Radial Basis Function Networks. This allows for short-term intention prediction relying only upon immediately available user input and on-board sensor data, to be coupled with real-time path generation based upon the same expert demonstration data via Dynamic Policy Programming, a stochastic optimal control method. Together these two elements provide a combined assistive mobility system, capable of operating in restrictive environments without the need for additional obstacle avoidance protocols. Experimental results in both simulation and on the University of Technology Sydney semi-autonomous wheelchair in settings not seen in training data show promise in assisting users of power mobility aids

    A review of the role of sensors in mobile context-aware recommendation systems

    Get PDF
    Recommendation systems are specialized in offering suggestions about specific items of different types (e.g., books, movies, restaurants, and hotels) that could be interesting for the user. They have attracted considerable research attention due to their benefits and also their commercial interest. Particularly, in recent years, the concept of context-aware recommendation system has appeared to emphasize the importance of considering the context of the situations in which the user is involved in order to provide more accurate recommendations. The detection of the context requires the use of sensors of different types, which measure different context variables. Despite the relevant role played by sensors in the development of context-aware recommendation systems, sensors and recommendation approaches are two fields usually studied independently. In this paper, we provide a survey on the use of sensors for recommendation systems. Our contribution can be seen from a double perspective. On the one hand, we overview existing techniques used to detect context factors that could be relevant for recommendation. On the other hand, we illustrate the interest of sensors by considering different recommendation use cases and scenarios

    Don't Make the Same Mistakes Again and Again: Learning Local Recovery Policies for Navigation from Human Demonstrations

    Get PDF
    In this paper, we present a human-in-the-loop learning framework for mobile robots to generate effective local policies in order to recover from navigation failures in long-term autonomy. We present an analysis of failure and recovery cases derived from long-term autonomous operation of a mobile robot, and propose a two-layer learning framework that allows to detect and recover from such navigation failures. Employing a learning by demonstration (LbD) approach, our framework can incrementally learn to autonomously recover from situations it initially needs humans to help with. The learning framework allows for both real-time failure detection and regression using Gaussian processes (GPs). Our empirical results on two different failure scenarios indicate that given 40 failure state observations, the true positive rate of the failure detection model exceeds 90%, ending with successful recovery actions in more than 90% of all detected cases

    Health State Estimation

    Full text link
    Life's most valuable asset is health. Continuously understanding the state of our health and modeling how it evolves is essential if we wish to improve it. Given the opportunity that people live with more data about their life today than any other time in history, the challenge rests in interweaving this data with the growing body of knowledge to compute and model the health state of an individual continually. This dissertation presents an approach to build a personal model and dynamically estimate the health state of an individual by fusing multi-modal data and domain knowledge. The system is stitched together from four essential abstraction elements: 1. the events in our life, 2. the layers of our biological systems (from molecular to an organism), 3. the functional utilities that arise from biological underpinnings, and 4. how we interact with these utilities in the reality of daily life. Connecting these four elements via graph network blocks forms the backbone by which we instantiate a digital twin of an individual. Edges and nodes in this graph structure are then regularly updated with learning techniques as data is continuously digested. Experiments demonstrate the use of dense and heterogeneous real-world data from a variety of personal and environmental sensors to monitor individual cardiovascular health state. State estimation and individual modeling is the fundamental basis to depart from disease-oriented approaches to a total health continuum paradigm. Precision in predicting health requires understanding state trajectory. By encasing this estimation within a navigational approach, a systematic guidance framework can plan actions to transition a current state towards a desired one. This work concludes by presenting this framework of combining the health state and personal graph model to perpetually plan and assist us in living life towards our goals.Comment: Ph.D. Dissertation @ University of California, Irvin

    Adaptive Shared Autonomy between Human and Robot to Assist Mobile Robot Teleoperation

    Get PDF
    Die Teleoperation vom mobilen Roboter wird in großem Umfang eingesetzt, wenn es für Mensch unpraktisch oder undurchführbar ist, anwesend zu sein, aber die Entscheidung von Mensch wird dennoch verlangt. Es ist für Mensch stressig und fehleranfällig wegen Zeitverzögerung und Abwesenheit des Situationsbewusstseins, ohne Unterstützung den Roboter zu steuern einerseits, andererseits kann der völlig autonome Roboter, trotz jüngsten Errungenschaften, noch keine Aufgabe basiert auf die aktuellen Modelle der Wahrnehmung und Steuerung unabhängig ausführen. Deswegen müssen beide der Mensch und der Roboter in der Regelschleife bleiben, um gleichzeitig Intelligenz zur Durchführung von Aufgaben beizutragen. Das bedeut, dass der Mensch die Autonomie mit dem Roboter während des Betriebes zusammenhaben sollte. Allerdings besteht die Herausforderung darin, die beiden Quellen der Intelligenz vom Mensch und dem Roboter am besten zu koordinieren, um eine sichere und effiziente Aufgabenausführung in der Fernbedienung zu gewährleisten. Daher wird in dieser Arbeit eine neuartige Strategie vorgeschlagen. Sie modelliert die Benutzerabsicht als eine kontextuelle Aufgabe, um eine Aktionsprimitive zu vervollständigen, und stellt dem Bediener eine angemessene Bewegungshilfe bei der Erkennung der Aufgabe zur Verfügung. Auf diese Weise bewältigt der Roboter intelligent mit den laufenden Aufgaben auf der Grundlage der kontextuellen Informationen, entlastet die Arbeitsbelastung des Bedieners und verbessert die Aufgabenleistung. Um diese Strategie umzusetzen und die Unsicherheiten bei der Erfassung und Verarbeitung von Umgebungsinformationen und Benutzereingaben (i.e. der Kontextinformationen) zu berücksichtigen, wird ein probabilistischer Rahmen von Shared Autonomy eingeführt, um die kontextuelle Aufgabe mit Unsicherheitsmessungen zu erkennen, die der Bediener mit dem Roboter durchführt, und dem Bediener die angemesse Unterstützung der Aufgabenausführung nach diesen Messungen anzubieten. Da die Weise, wie der Bediener eine Aufgabe ausführt, implizit ist, ist es nicht trivial, das Bewegungsmuster der Aufgabenausführung manuell zu modellieren, so dass eine Reihe von der datengesteuerten Ansätzen verwendet wird, um das Muster der verschiedenen Aufgabenausführungen von menschlichen Demonstrationen abzuleiten, sich an die Bedürfnisse des Bedieners in einer intuitiven Weise über lange Zeit anzupassen. Die Praxistauglichkeit und Skalierbarkeit der vorgeschlagenen Ansätze wird durch umfangreiche Experimente sowohl in der Simulation als auch auf dem realen Roboter demonstriert. Mit den vorgeschlagenen Ansätzen kann der Bediener aktiv und angemessen unterstützt werden, indem die Kognitionsfähigkeit und Autonomieflexibilität des Roboters zu erhöhen
    corecore