380 research outputs found

    Using Botnet Technologies to Counteract Network Traffic Analysis

    Get PDF
    Botnets have been problematic for over a decade. They are used to launch malicious activities including DDoS (Distributed-Denial-of-Service), spamming, identity theft, unauthorized bitcoin mining and malware distribution. A recent nation-wide DDoS attacks caused by the Mirai botnet on 10/21/2016 involving 10s of millions of IP addresses took down Twitter, Spotify, Reddit, The New York Times, Pinterest, PayPal and other major websites. In response to take-down campaigns by security personnel, botmasters have developed technologies to evade detection. The most widely used evasion technique is DNS fast-flux, where the botmaster frequently changes the mapping between domain names and IP addresses of the C&C server so that it will be too late or too costly to trace the C&C server locations. Domain names generated with Domain Generation Algorithms (DGAs) are used as the \u27rendezvous\u27 points between botmasters and bots. This work focuses on how to apply botnet technologies (fast-flux and DGA) to counteract network traffic analysis, therefore protecting user privacy. A better understanding of botnet technologies also helps us be pro-active in defending against botnets. First, we proposed two new DGAs using hidden Markov models (HMMs) and Probabilistic Context-Free Grammars (PCFGs) which can evade current detection methods and systems. Also, we developed two HMM-based DGA detection methods that can detect the botnet DGA-generated domain names with/without training sets. This helps security personnel understand the botnet phenomenon and develop pro-active tools to detect botnets. Second, we developed a distributed proxy system using fast-flux to evade national censorship and surveillance. The goal is to help journalists, human right advocates and NGOs in West Africa to have a secure and free Internet. Then we developed a covert data transport protocol to transform arbitrary message into real DNS traffic. We encode the message into benign-looking domain names generated by an HMM, which represents the statistical features of legitimate domain names. This can be used to evade Deep Packet Inspection (DPI) and protect user privacy in a two-way communication. Both applications serve as examples of applying botnet technologies to legitimate use. Finally, we proposed a new protocol obfuscation technique by transforming arbitrary network protocol into another (Network Time Protocol and a video game protocol of Minecraft as examples) in terms of packet syntax and side-channel features (inter-packet delay and packet size). This research uses botnet technologies to help normal users have secure and private communications over the Internet. From our botnet research, we conclude that network traffic is a malleable and artificial construct. Although existing patterns are easy to detect and characterize, they are also subject to modification and mimicry. This means that we can construct transducers to make any communication pattern look like any other communication pattern. This is neither bad nor good for security. It is a fact that we need to accept and use as best we can

    Denial-of-service attack modelling and detection for HTTP/2 services

    Get PDF
    Businesses and society alike have been heavily dependent on Internet-based services, albeit with experiences of constant and annoying disruptions caused by the adversary class. A malicious attack that can prevent establishment of Internet connections to web servers, initiated from legitimate client machines, is termed as a Denial of Service (DoS) attack; volume and intensity of which is rapidly growing thanks to the readily available attack tools and the ever-increasing network bandwidths. A majority of contemporary web servers are built on the HTTP/1.1 communication protocol. As a consequence, all literature found on DoS attack modelling and appertaining detection techniques, addresses only HTTP/1.x network traffic. This thesis presents a model of DoS attack traffic against servers employing the new communication protocol, namely HTTP/2. The HTTP/2 protocol significantly differs from its predecessor and introduces new messaging formats and data exchange mechanisms. This creates an urgent need to understand how malicious attacks including Denial of Service, can be launched against HTTP/2 services. Moreover, the ability of attackers to vary the network traffic models to stealthy affects web services, thereby requires extensive research and modelling. This research work not only provides a novel model for DoS attacks against HTTP/2 services, but also provides a model of stealthy variants of such attacks, that can disrupt routine web services. Specifically, HTTP/2 traffic patterns that consume computing resources of a server, such as CPU utilisation and memory consumption, were thoroughly explored and examined. The study presents four HTTP/2 attack models. The first being a flooding-based attack model, the second being a distributed model, the third and fourth are variant DoS attack models. The attack traffic analysis conducted in this study employed four machine learning techniques, namely NaĂŻve Bayes, Decision Tree, JRip and Support Vector Machines. The HTTP/2 normal traffic model portrays online activities of human users. The model thus formulated was employed to also generate flash-crowd traffic, i.e. a large volume of normal traffic that incapacitates a web server, similar in fashion to a DoS attack, albeit with non-malicious intent. Flash-crowd traffic generated based on the defined model was used to populate the dataset of legitimate network traffic, to fuzz the machine learning-based attack detection process. The two variants of DoS attack traffic differed in terms of the traffic intensities and the inter-packet arrival delays introduced to better analyse the type and quality of DoS attacks that can be launched against HTTP/2 services. A detailed analysis of HTTP/2 features is also presented to rank relevant network traffic features for all four traffic models presented. These features were ranked based on legitimate as well as attack traffic observations conducted in this study. The study shows that machine learning-based analysis yields better classification performance, i.e. lower percentage of incorrectly classified instances, when the proposed HTTP/2 features are employed compared to when HTTP/1.1 features alone are used. The study shows how HTTP/2 DoS attack can be modelled, and how future work can extend the proposed model to create variant attack traffic models that can bypass intrusion-detection systems. Likewise, as the Internet traffic and the heterogeneity of Internet-connected devices are projected to increase significantly, legitimate traffic can yield varying traffic patterns, demanding further analysis. The significance of having current legitimate traffic datasets, together with the scope to extend the DoS attack models presented herewith, suggest that research in the DoS attack analysis and detection area will benefit from the work presented in this thesis

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Comparative Analysis Based on Survey of DDOS Attacks’ Detection Techniques at Transport, Network, and Application Layers

    Get PDF
    Distributed Denial of Service (DDOS) is one of the most prevalent attacks and can be executed in diverse ways using various tools and codes. This makes it very difficult for the security researchers and engineers to come up with a rigorous and efficient security methodology. Even with thorough research, analysis, real time implementation, and application of the best mechanisms in test environments, there are various ways to exploit the smallest vulnerability within the system that gets overlooked while designing the defense mechanism. This paper presents a comprehensive survey of various methodologies implemented by researchers and engineers to detect DDOS attacks at network, transport, and application layers using comparative analysis. DDOS attacks are most prevalent on network, transport, and application layers justifying the need to focus on these three layers in the OSI model

    DoS and DDoS Attacks: Defense, Detection and Traceback Mechanisms - A Survey

    Get PDF
    Denial of Service (DoS) or Distributed Denial of Service (DDoS) attacks are typically explicit attempts to exhaust victim2019;s bandwidth or disrupt legitimate users2019; access to services. Traditional architecture of internet is vulnerable to DDoS attacks and it provides an opportunity to an attacker to gain access to a large number of compromised computers by exploiting their vulnerabilities to set up attack networks or Botnets. Once attack network or Botnet has been set up, an attacker invokes a large-scale, coordinated attack against one or more targets. Asa result of the continuous evolution of new attacks and ever-increasing range of vulnerable hosts on the internet, many DDoS attack Detection, Prevention and Traceback mechanisms have been proposed, In this paper, we tend to surveyed different types of attacks and techniques of DDoS attacks and their countermeasures. The significance of this paper is that the coverage of many aspects of countering DDoS attacks including detection, defence and mitigation, traceback approaches, open issues and research challenges

    MFIRE-2: A Multi Agent System for Flow-based Intrusion Detection Using Stochastic Search

    Get PDF
    Detecting attacks targeted against military and commercial computer networks is a crucial element in the domain of cyberwarfare. The traditional method of signature-based intrusion detection is a primary mechanism to alert administrators to malicious activity. However, signature-based methods are not capable of detecting new or novel attacks. This research continues the development of a novel simulated, multiagent, flow-based intrusion detection system called MFIRE. Agents in the network are trained to recognize common attacks, and they share data with other agents to improve the overall effectiveness of the system. A Support Vector Machine (SVM) is the primary classifier with which agents determine an attack is occurring. Agents are prompted to move to different locations within the network to find better vantage points, and two methods for achieving this are developed. One uses a centralized reputation-based model, and the other uses a decentralized model optimized with stochastic search. The latter is tested for basic functionality. The reputation model is extensively tested in two configurations and results show that it is significantly superior to a system with non-moving agents. The resulting system, MFIRE-2, demonstrates exciting new network defense capabilities, and should be considered for implementation in future cyberwarfare applications

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2
    • …
    corecore