1,246 research outputs found

    Unsupervised Terminological Ontology Learning based on Hierarchical Topic Modeling

    Full text link
    In this paper, we present hierarchical relationbased latent Dirichlet allocation (hrLDA), a data-driven hierarchical topic model for extracting terminological ontologies from a large number of heterogeneous documents. In contrast to traditional topic models, hrLDA relies on noun phrases instead of unigrams, considers syntax and document structures, and enriches topic hierarchies with topic relations. Through a series of experiments, we demonstrate the superiority of hrLDA over existing topic models, especially for building hierarchies. Furthermore, we illustrate the robustness of hrLDA in the settings of noisy data sets, which are likely to occur in many practical scenarios. Our ontology evaluation results show that ontologies extracted from hrLDA are very competitive with the ontologies created by domain experts

    Ontologies across disciplines

    Get PDF

    A user profiling component with the aid of user ontologies

    Get PDF
    Abstract: What follows is a contribution to the field of user modeling for adaptive teaching and learning programs especially in the medical field. The paper outlines existing approaches to the problem of extracting user information in a form that can be exploited by adaptive software. We focus initially on the so-called stereotyping method, which allocates users into classes adaptively, reflecting characteristics such as physical data, social background, and computer experience. The user classifications of the stereotyping method are however ad hoc and unprincipled, and they can be exploited by the adaptive system only after a large number of trials by various kinds of users. We argue that the remedy is to create a database of user ontologies from which readymade taxonomies can be derived in such a way as to enable associated software to support a variety of different types of users

    Ontology mapping: the state of the art

    No full text
    Ontology mapping is seen as a solution provider in today's landscape of ontology research. As the number of ontologies that are made publicly available and accessible on the Web increases steadily, so does the need for applications to use them. A single ontology is no longer enough to support the tasks envisaged by a distributed environment like the Semantic Web. Multiple ontologies need to be accessed from several applications. Mapping could provide a common layer from which several ontologies could be accessed and hence could exchange information in semantically sound manners. Developing such mapping has beeb the focus of a variety of works originating from diverse communities over a number of years. In this article we comprehensively review and present these works. We also provide insights on the pragmatics of ontology mapping and elaborate on a theoretical approach for defining ontology mapping

    Cross-language Ontology Learning: Incorporating and Exploiting Cross-language Data in the Ontology Learning Process

    Get PDF
    Hans Hjelm. Cross-language Ontology Learning: Incorporating and Exploiting Cross-language Data in the Ontology Learning Process. NEALT Monograph Series, Vol. 1 (2009), 159 pages. © 2009 Hans Hjelm. Published by Northern European Association for Language Technology (NEALT) http://omilia.uio.no/nealt . Electronically published at Tartu University Library (Estonia) http://hdl.handle.net/10062/10126

    Conceptual Representations for Computational Concept Creation

    Get PDF
    Computational creativity seeks to understand computational mechanisms that can be characterized as creative. The creation of new concepts is a central challenge for any creative system. In this article, we outline different approaches to computational concept creation and then review conceptual representations relevant to concept creation, and therefore to computational creativity. The conceptual representations are organized in accordance with two important perspectives on the distinctions between them. One distinction is between symbolic, spatial and connectionist representations. The other is between descriptive and procedural representations. Additionally, conceptual representations used in particular creative domains, such as language, music, image and emotion, are reviewed separately. For every representation reviewed, we cover the inference it affords, the computational means of building it, and its application in concept creation.Peer reviewe

    Knowledge Base Enrichment by Relation Learning from Social Tagging Data

    Get PDF
    There has been considerable interest in transforming unstructured social tagging data into structured knowledge for semantic-based retrieval and recommendation. Research in this line mostly exploits data co-occurrence and often overlooks the complex and ambiguous meanings of tags. Furthermore, there have been few comprehensive evaluation studies regarding the quality of the discovered knowledge. We propose a supervised learning method to discover subsumption relations from tags. The key to this method is quantifying the probabilistic association among tags to better characterise their relations. We further develop an algorithm to organise tags into hierarchies based on the learned relations. Experiments were conducted using a large, publicly available dataset, Bibsonomy, and three popular, human-engineered or data-driven knowledge bases: DBpedia, Microsoft Concept Graph, and ACM Computing Classification System. We performed a comprehensive evaluation using different strategies: relation-level, ontology-level, and knowledge base enrichment based evaluation. The results clearly show that the proposed method can extract knowledge of better quality than the existing methods against the gold standard knowledge bases. The proposed approach can also enrich knowledge bases with new subsumption relations, having the potential to significantly reduce time and human effort for knowledge base maintenance and ontology evolution
    corecore