47 research outputs found

    Algorithms for Matrix Multiplication via Sampling and Opportunistic Matrix Multiplication

    Get PDF
    Karppa & Kaski (2019) proposed a novel type of ``broken" or ``opportunistic" multiplication algorithm, based on a variant of Strassen's algorithm, and used this to develop new algorithms for Boolean matrix multiplication, among other tasks. For instance, their algorithm can compute Boolean matrix multiplication in O(nlog2(6+6/7)logn)=O(n2.778)O(n^{\log_2(6+6/7)} \log n) = O(n^{2.778}) time. While faster matrix multiplication algorithms exist asymptotically, in practice most such algorithms are infeasible for practical problems. In this note, we describe an alternate way to use the broken matrix multiplication algorithm to approximately compute matrix multiplication, either for real-valued matrices or Boolean matrices. In brief, instead of running multiple iterations of the broken algorithm on the original input matrix, we form a new larger matrix by sampling and run a single iteration of the broken algorithm. Asymptotically, the resulting algorithm has runtime O(n3log6log7logn)O(n2.763)O(n^{\frac{3 \log6}{\log7}} \log n) \leq O(n^{2.763}), a slight improvement of Karppa-Kaski's algorithm. Since the goal is to obtain new practical matrix-multiplication algorithms, these asymptotic runtime bounds are not directly useful. We estimate the runtime for our algorithm for some sample problems which are at the upper limits of practical algorithms; unfortunately, for these parameters, the new algorithm does not appear to be beneficial

    Limits on the Universal Method for Matrix Multiplication

    Get PDF
    In this work, we prove limitations on the known methods for designing matrix multiplication algorithms. Alman and Vassilevska Williams [Alman and Williams, 2018] recently defined the Universal Method, which substantially generalizes all the known approaches including Strassen\u27s Laser Method [V. Strassen, 1987] and Cohn and Umans\u27 Group Theoretic Method [Cohn and Umans, 2003]. We prove concrete lower bounds on the algorithms one can design by applying the Universal Method to many different tensors. Our proofs use new tools for upper bounding the asymptotic slice rank of a wide range of tensors. Our main result is that the Universal method applied to any Coppersmith-Winograd tensor CW_q cannot yield a bound on omega, the exponent of matrix multiplication, better than 2.16805. By comparison, it was previously only known that the weaker "Galactic Method" applied to CW_q could not achieve an exponent of 2. We also study the Laser Method (which is, in principle, a highly special case of the Universal Method) and prove that it is "complete" for matrix multiplication algorithms: when it applies to a tensor T, it achieves omega = 2 if and only if it is possible for the Universal method applied to T to achieve omega = 2. Hence, the Laser Method, which was originally used as an algorithmic tool, can also be seen as a lower bounding tool. For example, in their landmark paper, Coppersmith and Winograd [Coppersmith and Winograd, 1990] achieved a bound of omega <= 2.376, by applying the Laser Method to CW_q. By our result, the fact that they did not achieve omega=2 implies a lower bound on the Universal Method applied to CW_q. Indeed, if it were possible for the Universal Method applied to CW_q to achieve omega=2, then Coppersmith and Winograd\u27s application of the Laser Method would have achieved omega=2

    The Asymptotic Rank Conjecture and the Set Cover Conjecture are not Both True

    Full text link
    Strassen's asymptotic rank conjecture [Progr. Math. 120 (1994)] claims a strong submultiplicative upper bound on the rank of a three-tensor obtained as an iterated Kronecker product of a constant-size base tensor. The conjecture, if true, most notably would put square matrix multiplication in quadratic time. We note here that some more-or-less unexpected algorithmic results in the area of exponential-time algorithms would also follow. Specifically, we study the so-called set cover conjecture, which states that for any ϵ>0\epsilon>0 there exists a positive integer constant kk such that no algorithm solves the kk-Set Cover problem in worst-case time O((2ϵ)nFpoly(n))\mathcal{O}((2-\epsilon)^n|\mathcal F|\operatorname{poly}(n)). The kk-Set Cover problem asks, given as input an nn-element universe UU, a family F\mathcal F of size-at-most-kk subsets of UU, and a positive integer tt, whether there is a subfamily of at most tt sets in F\mathcal F whose union is UU. The conjecture was formulated by Cygan et al. in the monograph Parameterized Algorithms [Springer, 2015] but was implicit as a hypothesis already in Cygan et al. [CCC 2012, ACM Trans. Algorithms 2016], there conjectured to follow from the Strong Exponential Time Hypothesis. We prove that if the asymptotic rank conjecture is true, then the set cover conjecture is false. Using a reduction by Krauthgamer and Trabelsi [STACS 2019], in this scenario we would also get a O((2δ)n)\mathcal{O}((2-\delta)^n)-time randomized algorithm for some constant δ>0\delta>0 for another well-studied problem for which no such algorithm is known, namely that of deciding whether a given nn-vertex directed graph has a Hamiltonian cycle

    Faster Matrix Multiplication via Asymmetric Hashing

    Full text link
    Fast matrix multiplication is one of the most fundamental problems in algorithm research. The exponent of the optimal time complexity of matrix multiplication is usually denoted by ω\omega. This paper discusses new ideas for improving the laser method for fast matrix multiplication. We observe that the analysis of higher powers of the Coppersmith-Winograd tensor [Coppersmith & Winograd 1990] incurs a "combination loss", and we partially compensate for it using an asymmetric version of CW's hashing method. By analyzing the eighth power of the CW tensor, we give a new bound of ω<2.37188\omega<2.37188, which improves the previous best bound of ω<2.37286\omega<2.37286 [Alman & Vassilevska Williams 2020]. Our result breaks the lower bound of 2.37252.3725 in [Ambainis, Filmus & Le Gall 2015] because of the new method for analyzing component (constituent) tensors.Comment: 67 page

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Programming Languages and Systems

    Get PDF
    This open access book constitutes the proceedings of the 31st European Symposium on Programming, ESOP 2022, which was held during April 5-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 21 regular papers presented in this volume were carefully reviewed and selected from 64 submissions. They deal with fundamental issues in the specification, design, analysis, and implementation of programming languages and systems

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC
    corecore