325 research outputs found

    Measuring cortical connectivity in Alzheimer's disease as a brain neural network pathology: Toward clinical applications

    Get PDF
    Objectives: The objective was to review the literature on diffusion tensor imaging as well as resting-state functional magnetic resonance imaging and electroencephalography (EEG) to unveil neuroanatomical and neurophysiological substrates of Alzheimer’s disease (AD) as a brain neural network pathology affecting structural and functional cortical connectivity underlying human cognition. Methods: We reviewed papers registered in PubMed and other scientific repositories on the use of these techniques in amnesic mild cognitive impairment (MCI) and clinically mild AD dementia patients compared to cognitively intact elderly individuals (Controls). Results: Hundreds of peer-reviewed (cross-sectional and longitudinal) papers have shown in patients with MCI and mild AD compared to Controls (1) impairment of callosal (splenium), thalamic, and anterior–posterior white matter bundles; (2) reduced correlation of resting state blood oxygen level-dependent activity across several intrinsic brain circuits including default mode and attention-related networks; and (3) abnormal power and functional coupling of resting state cortical EEG rhythms. Clinical applications of these measures are still limited. Conclusions: Structural and functional (in vivo) cortical connectivity measures represent a reliable marker of cerebral reserve capacity and should be used to predict and monitor the evolution of AD and its relative impact on cognitive domains in pre-clinical, prodromal, and dementia stages of AD. (JINS, 2016, 22, 138–163

    Structural and Functional Brain Connectivity in Middle-Aged Carriers of Risk Alleles for Alzheimer\u27s Disease

    Get PDF
    Single nucleotide polymorphisms (SNPs) in APOE, COMT, BDNF, and KIBRA have been associated with age-related memory performance and executive functioning as well as risk for Alzheimer’s disease (AD). The purpose of the present investigation was to characterize differences in brain functional and structural integrity associated with these SNPs as potential endophenotypes of age-related cognitive decline. I focused my investigation on healthy, cognitively normal middle-aged adults, as disentangling the early effects of healthy versus pathological aging in this group may aid early detection and prevention of AD. The aims of the study were 1) to characterize SNP-related differences in functional connectivity within two resting state networks (RSNs; default mode network [DMN] and executive control network [ECN]) associated with memory and executive functioning, respectively; 2) to identify differences in the white matter (WM) microstructural integrity of tracts underlying these RSNs; and 3) to characterize genotype differences in the graph properties of an integrated functional-structural network. Participants (age 40-60, N = 150) underwent resting state functional magnetic resonance imaging (rs-fMRI), diffusion tensor imaging (DTI), and genotyping. Independent components analysis (ICA) was used to derive RSNs, while probabilistic tractography was performed to characterize tracts connecting RSN subregions. A technique known as functional-by-structural hierarchical (FSH) mapping was used to create the integrated, whole brain functional-structural network, or resting state structural connectome (rsSC). I found that BDNF risk allele carriers had lower functional connectivity within the DMN, while KIBRA risk allele carriers had poorer WM microstructural integrity in tracts underlying the DMN and ECN. In addition to these differences in the connectivity of specific RSNs, I found significant impairments in the global and local topology of the rsSC across all evaluated SNPs. Collectively, these findings suggest that integrating multiple neuroimaging modalities and using graph theoretical analysis may reveal network-level vulnerabilities that may serve as biomarkers of age-related cognitive decline in middle age, decades before the onset of overt cognitive impairment

    Functional Organization of the Brain at Rest and During Complex Tasks Using fMRI

    Get PDF
    How and why functional connectivity (FC), which captures the correlations among brain regions and/or networks, differs in various brain states has been incompletely understood. I review high-level background on this problem and how it relates to 1) the contributions of task-evoked activity, 2) white-matter fMRI, and 3) disease states in Chapter 1. In Chapter 2, based on the notion that brain activity during a task reflects an unknown mixture of spontaneous activity and task-evoked responses, we uncovered that the difference in FC between a task state (a naturalistic movie) and resting state only marginally (3-15%) reflects task-evoked connectivity. Instead, these changes may reflect changes in spontaneously emerging networks. In Chapter 3, we were able to show subtle task-related differences in the white matter using fMRI, which has only rarely been used to study functions in this tissue type. In doing so, we also demonstrated that white matter independent components were also hierarchically organized into axonal fiber bundles, challenging the conventional practice of taking white-matter signals as noise or artifacts. Finally, in Chapter 4, we examined the utility of combining FC with task-activation studies in uncovering changes in brain activity during preclinical Alzheimer\u27s Disease (mild cognitive impairment (MCI) and subjective cognitive decline (SCD) populations), based on data collected at the Indiana University School of Medicine. We found a reduction in neural task-based activations and resting-state FC that appeared to be directly related to diagnostic severity. Taken together, the work presented in this dissertation paves the way for a novel framework for understanding neural dynamics in health and disease

    Artificial intelligence for diagnostic and prognostic neuroimaging in dementia: a systematic review

    Get PDF
    Introduction: Artificial intelligence (AI) and neuroimaging offer new opportunities for diagnosis and prognosis of dementia. Methods: We systematically reviewed studies reporting AI for neuroimaging in diagnosis and/or prognosis of cognitive neurodegenerative diseases. Results: A total of 255 studies were identified. Most studies relied on the Alzheimer's Disease Neuroimaging Initiative dataset. Algorithmic classifiers were the most commonly used AI method (48%) and discriminative models performed best for differentiating Alzheimer's disease from controls. The accuracy of algorithms varied with the patient cohort, imaging modalities, and stratifiers used. Few studies performed validation in an independent cohort. Discussion: The literature has several methodological limitations including lack of sufficient algorithm development descriptions and standard definitions. We make recommendations to improve model validation including addressing key clinical questions, providing sufficient description of AI methods and validating findings in independent datasets. Collaborative approaches between experts in AI and medicine will help achieve the promising potential of AI tools in practice. Highlights: There has been a rapid expansion in the use of machine learning for diagnosis and prognosis in neurodegenerative disease Most studies (71%) relied on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with no other individual dataset used more than five times There has been a recent rise in the use of more complex discriminative models (e.g., neural networks) that performed better than other classifiers for classification of AD vs healthy controls We make recommendations to address methodological considerations, addressing key clinical questions, and validation We also make recommendations for the field more broadly to standardize outcome measures, address gaps in the literature, and monitor sources of bias

    Episodic memory dysfunction and hypersynchrony in brain functional networks in cognitively intact subjects and MCI: A study of 379 individuals

    Get PDF
    Delayed recall (DR) impairment is one of the most significant predictive factors in defining the progression to Alzheimer’s disease (AD). Changes in brain functional connectivity (FC) could accompany this decline in the DR performance even in a resting state condition from the preclinical stages to the diagnosis of AD itself, so the characterization of the relationship between the two phenomena has attracted increasing interest. Another aspect to contemplate is the potential moderator role of the APOE genotype in this association, considering the evidence about their implication for the disease. 379 subjects (118 mild cognitive impairment (MCI) and 261 cognitively intact (CI) individuals) underwent an extensive evaluation, including MEG recording. Applying cluster-based permutation test, we identified a cluster of differences in FC and studied which connections drove such an effect in DR. The moderation effect of APOE genotype between FC results and delayed recall was evaluated too. Higher FC in beta band in the right occipital region is associated with lower DR scores in both groups. A significant anteroposterior link emerged in the seed-based analysis with higher values in MCI. Moreover, APOE genotype appeared as a moderator between beta FC and DR performance only in the CI group. An increased beta FC in the anteroposterior brain region appears to be associated with lower memory performance in MCI. This finding could help discriminate the pattern of the progression of healthy aging to MCI and the relation between resting state and memory performance

    Frameworks to Investigate Robustness and Disease Characterization/Prediction Utility of Time-Varying Functional Connectivity State Profiles of the Human Brain at Rest

    Get PDF
    Neuroimaging technologies aim at delineating the highly complex structural and functional organization of the human brain. In recent years, several unimodal as well as multimodal analyses of structural MRI (sMRI) and functional MRI (fMRI) neuroimaging modalities, leveraging advanced signal processing and machine learning based feature extraction algorithms, have opened new avenues in diagnosis of complex brain syndromes and neurocognitive disorders. Generically regarding these neuroimaging modalities as filtered, complimentary insights of brain’s anatomical and functional organization, multimodal data fusion efforts could enable more comprehensive mapping of brain structure and function. Large scale functional organization of the brain is often studied by viewing the brain as a complex, integrative network composed of spatially distributed, but functionally interacting, sub-networks that continually share and process information. Such whole-brain functional interactions, also referred to as patterns of functional connectivity (FC), are typically examined as levels of synchronous co-activation in the different functional networks of the brain. More recently, there has been a major paradigm shift from measuring the whole-brain FC in an oversimplified, time-averaged manner to additional exploration of time-varying mechanisms to identify the recurring, transient brain configurations or brain states, referred to as time-varying FC state profiles in this dissertation. Notably, prior studies based on time-varying FC approaches have made use of these relatively lower dimensional fMRI features to characterize pathophysiology and have also been reported to relate to demographic characterization, consciousness levels and cognition. In this dissertation, we corroborate the efficacy of time-varying FC state profiles of the human brain at rest by implementing statistical frameworks to evaluate their robustness and statistical significance through an in-depth, novel evaluation on multiple, independent partitions of a very large rest-fMRI dataset, as well as extensive validation testing on surrogate rest-fMRI datasets. In the following, we present a novel data-driven, blind source separation based multimodal (sMRI-fMRI) data fusion framework that uses the time-varying FC state profiles as features from the fMRI modality to characterize diseased brain conditions and substantiate brain structure-function relationships. Finally, we present a novel data-driven, deep learning based multimodal (sMRI-fMRI) data fusion framework that examines the degree of diagnostic and prognostic performance improvement based on time-varying FC state profiles as features from the fMRI modality. The approaches developed and tested in this dissertation evince high levels of robustness and highlight the utility of time-varying FC state profiles as potential biomarkers to characterize, diagnose and predict diseased brain conditions. As such, the findings in this work argue in favor of the view of FC investigations of the brain that are centered on time-varying FC approaches, and also highlight the benefits of combining multiple neuroimaging data modalities via data fusion

    Cerebellum and neurodegenerative diseases: Beyond conventional magnetic resonance imaging

    Get PDF
    The cerebellum plays a key role in movement control and in cognition and cerebellar involvement is described in several neurodegenerative diseases. While conventional magnetic resonance imaging (MRI) is widely used for brain and cerebellar morphologic evaluation, advanced MRI techniques allow the investigation of cerebellar microstructural and functional characteristics. Volumetry, voxel-based morphometry, diffusion MRI based fiber tractography, resting state and task related functional MRI, perfusion, and proton MR spectroscopy are among the most common techniques applied to the study of cerebellum. In the present review, after providing a brief description of each technique's advantages and limitations, we focus on their application to the study of cerebellar injury in major neurodegenerative diseases, such as multiple sclerosis, Parkinson's and Alzheimer's disease and hereditary ataxia. A brief introduction to the pathological substrate of cerebellar involvement is provided for each disease, followed by the review of MRI studies exploring structural and functional cerebellar abnormalities and by a discussion of the clinical relevance of MRI measures of cerebellar damage in terms of both clinical status and cognitive performance
    • …
    corecore