40,369 research outputs found

    A survey on the use of relevance feedback for information access systems

    Get PDF
    Users of online search engines often find it difficult to express their need for information in the form of a query. However, if the user can identify examples of the kind of documents they require then they can employ a technique known as relevance feedback. Relevance feedback covers a range of techniques intended to improve a user's query and facilitate retrieval of information relevant to a user's information need. In this paper we survey relevance feedback techniques. We study both automatic techniques, in which the system modifies the user's query, and interactive techniques, in which the user has control over query modification. We also consider specific interfaces to relevance feedback systems and characteristics of searchers that can affect the use and success of relevance feedback systems

    Probabilistic learning for selective dissemination of information

    Get PDF
    New methods and new systems are needed to filter or to selectively distribute the increasing volume of electronic information being produced nowadays. An effective information filtering system is one that provides the exact information that fulfills user's interests with the minimum effort by the user to describe it. Such a system will have to be adaptive to the user changing interest. In this paper we describe and evaluate a learning model for information filtering which is an adaptation of the generalized probabilistic model of information retrieval. The model is based on the concept of 'uncertainty sampling', a technique that allows for relevance feedback both on relevant and nonrelevant documents. The proposed learning model is the core of a prototype information filtering system called ProFile

    TopSig: Topology Preserving Document Signatures

    Get PDF
    Performance comparisons between File Signatures and Inverted Files for text retrieval have previously shown several significant shortcomings of file signatures relative to inverted files. The inverted file approach underpins most state-of-the-art search engine algorithms, such as Language and Probabilistic models. It has been widely accepted that traditional file signatures are inferior alternatives to inverted files. This paper describes TopSig, a new approach to the construction of file signatures. Many advances in semantic hashing and dimensionality reduction have been made in recent times, but these were not so far linked to general purpose, signature file based, search engines. This paper introduces a different signature file approach that builds upon and extends these recent advances. We are able to demonstrate significant improvements in the performance of signature file based indexing and retrieval, performance that is comparable to that of state of the art inverted file based systems, including Language models and BM25. These findings suggest that file signatures offer a viable alternative to inverted files in suitable settings and from the theoretical perspective it positions the file signatures model in the class of Vector Space retrieval models.Comment: 12 pages, 8 figures, CIKM 201

    Setting per-field normalisation hyper-parameters for the named-page finding search task

    Get PDF
    Per-field normalisation has been shown to be effective for Web search tasks, e.g. named-page finding. However, per-field normalisation also suffers from having hyper-parameters to tune on a per-field basis. In this paper, we argue that the purpose of per-field normalisation is to adjust the linear relationship between field length and term frequency. We experiment with standard Web test collections, using three document fields, namely the body of the document, its title, and the anchor text of its incoming links. From our experiments, we find that across different collections, the linear correlation values, given by the optimised hyper-parameter settings, are proportional to the maximum negative linear correlation. Based on this observation, we devise an automatic method for setting the per-field normalisation hyper-parameter values without the use of relevance assessment for tuning. According to the evaluation results, this method is shown to be effective for the body and title fields. In addition, the difficulty in setting the per-field normalisation hyper-parameter for the anchor text field is explained

    Variational Deep Semantic Hashing for Text Documents

    Full text link
    As the amount of textual data has been rapidly increasing over the past decade, efficient similarity search methods have become a crucial component of large-scale information retrieval systems. A popular strategy is to represent original data samples by compact binary codes through hashing. A spectrum of machine learning methods have been utilized, but they often lack expressiveness and flexibility in modeling to learn effective representations. The recent advances of deep learning in a wide range of applications has demonstrated its capability to learn robust and powerful feature representations for complex data. Especially, deep generative models naturally combine the expressiveness of probabilistic generative models with the high capacity of deep neural networks, which is very suitable for text modeling. However, little work has leveraged the recent progress in deep learning for text hashing. In this paper, we propose a series of novel deep document generative models for text hashing. The first proposed model is unsupervised while the second one is supervised by utilizing document labels/tags for hashing. The third model further considers document-specific factors that affect the generation of words. The probabilistic generative formulation of the proposed models provides a principled framework for model extension, uncertainty estimation, simulation, and interpretability. Based on variational inference and reparameterization, the proposed models can be interpreted as encoder-decoder deep neural networks and thus they are capable of learning complex nonlinear distributed representations of the original documents. We conduct a comprehensive set of experiments on four public testbeds. The experimental results have demonstrated the effectiveness of the proposed supervised learning models for text hashing.Comment: 11 pages, 4 figure

    Generalized Kernel-based Visual Tracking

    Full text link
    In this work we generalize the plain MS trackers and attempt to overcome standard mean shift trackers' two limitations. It is well known that modeling and maintaining a representation of a target object is an important component of a successful visual tracker. However, little work has been done on building a robust template model for kernel-based MS tracking. In contrast to building a template from a single frame, we train a robust object representation model from a large amount of data. Tracking is viewed as a binary classification problem, and a discriminative classification rule is learned to distinguish between the object and background. We adopt a support vector machine (SVM) for training. The tracker is then implemented by maximizing the classification score. An iterative optimization scheme very similar to MS is derived for this purpose.Comment: 12 page
    corecore