381 research outputs found

    Sampling-based motion planning with deterministic u-calculus specifications

    Get PDF
    In this paper, we propose algorithms for the online computation of control programs for dynamical systems that provably satisfy a class of temporal logic specifications. Such specifications have recently been proposed in the literature as a powerful tool to synthesize provably correct control programs, for example for embedded systems and robotic applications. The proposed algorithms, generalizing state-of-the-art algorithms for point-to-point motion planning, incrementally build finite transition systems representing a discrete subset of dynamically feasible trajectories. At each iteration, local -calculus model-checking methods are used to establish whether the current transition system satisfies the specifications. Efficient sampling strategies are presented, ensuring the probabilistic completeness of the algorithms. We demonstrate the effectiveness of the proposed approach on simulation examples.Michigan/AFRL Collaborative Center on Control Sciences, AFOSR (grant no. FA 8650-07-2-3744

    Leveraging Compositional Methods for Modeling and Verification of an Autonomous Taxi System

    Full text link
    We apply a compositional formal modeling and verification method to an autonomous aircraft taxi system. We provide insights into the modeling approach and we identify several research areas where further development is needed. Specifically, we identify the following needs: (1) semantics of composition of viewpoints expressed in different specification languages, and tools to reason about heterogeneous declarative models; (2) libraries of formal models for autonomous systems to speed up modeling and enable efficient reasoning; (3) methods to lift verification results generated by automated reasoning tools to the specification level; (4) probabilistic contract frameworks to reason about imperfect implementations; (5) standard high-level functional architectures for autonomous systems; and (6) a theory of higher-order contracts. We believe that addressing these research needs, among others, could improve the adoption of formal methods in the design of autonomous systems including learning-enabled systems, and increase confidence in their safe operations.Comment: 2023 International Conference on Assured Autonomy (ICAA

    Software tools for the cognitive development of autonomous robots

    Get PDF
    Robotic systems are evolving towards higher degrees of autonomy. This paper reviews the cognitive tools available nowadays for the fulfilment of abstract or long-term goals as well as for learning and modifying their behaviour.Peer ReviewedPostprint (author's final draft
    • …
    corecore