15 research outputs found

    Probabilistic Riemannian submanifold learning with wrapped Gaussian process latent variable models

    Full text link
    Latent variable models (LVMs) learn probabilistic models of data manifolds lying in an \emph{ambient} Euclidean space. In a number of applications, a priori known spatial constraints can shrink the ambient space into a considerably smaller manifold. Additionally, in these applications the Euclidean geometry might induce a suboptimal similarity measure, which could be improved by choosing a different metric. Euclidean models ignore such information and assign probability mass to data points that can never appear as data, and vastly different likelihoods to points that are similar under the desired metric. We propose the wrapped Gaussian process latent variable model (WGPLVM), that extends Gaussian process latent variable models to take values strictly on a given ambient Riemannian manifold, making the model blind to impossible data points. This allows non-linear, probabilistic inference of low-dimensional Riemannian submanifolds from data. Our evaluation on diverse datasets show that we improve performance on several tasks, including encoding, visualization and uncertainty quantification

    Probabilistic Riemannian submanifold learning with wrapped Gaussian process latent variable models

    Full text link
    Latent variable models (LVMs) learn probabilistic models of data manifolds lying in an \emph{ambient} Euclidean space. In a number of applications, a priori known spatial constraints can shrink the ambient space into a considerably smaller manifold. Additionally, in these applications the Euclidean geometry might induce a suboptimal similarity measure, which could be improved by choosing a different metric. Euclidean models ignore such information and assign probability mass to data points that can never appear as data, and vastly different likelihoods to points that are similar under the desired metric. We propose the wrapped Gaussian process latent variable model (WGPLVM), that extends Gaussian process latent variable models to take values strictly on a given ambient Riemannian manifold, making the model blind to impossible data points. This allows non-linear, probabilistic inference of low-dimensional Riemannian submanifolds from data. Our evaluation on diverse datasets show that we improve performance on several tasks, including encoding, visualization and uncertainty quantification

    Isometric Gaussian Process Latent Variable Model for Dissimilarity Data

    Full text link
    We present a probabilistic model where the latent variable respects both the distances and the topology of the modeled data. The model leverages the Riemannian geometry of the generated manifold to endow the latent space with a well-defined stochastic distance measure, which is modeled locally as Nakagami distributions. These stochastic distances are sought to be as similar as possible to observed distances along a neighborhood graph through a censoring process. The model is inferred by variational inference based on observations of pairwise distances. We demonstrate how the new model can encode invariances in the learned manifolds.Comment: ICML 202

    Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Equivariant Projected Kernels

    Get PDF
    Gaussian processes are machine learning models capable of learning unknown functions in a way that represents uncertainty, thereby facilitating construction of optimal decision-making systems. Motivated by a desire to deploy Gaussian processes in novel areas of science, a rapidly-growing line of research has focused on constructively extending these models to handle non-Euclidean domains, including Riemannian manifolds, such as spheres and tori. We propose techniques that generalize this class to model vector fields on Riemannian manifolds, which are important in a number of application areas in the physical sciences. To do so, we present a general recipe for constructing gauge equivariant kernels, which induce Gaussian vector fields, i.e. vector-valued Gaussian processes coherent with geometry, from scalar-valued Riemannian kernels. We extend standard Gaussian process training methods, such as variational inference, to this setting. This enables vector-valued Gaussian processes on Riemannian manifolds to be trained using standard methods and makes them accessible to machine learning practitioners

    Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge Independent Projected Kernels

    Get PDF
    Gaussian processes are machine learning models capable of learning unknown functions in a way that represents uncertainty, thereby facilitating construction of optimal decision-making systems. Motivated by a desire to deploy Gaussian processes in novel areas of science, a rapidly-growing line of research has focused on constructively extending these models to handle non-Euclidean domains, including Riemannian manifolds, such as spheres and tori. We propose techniques that generalize this class to model vector fields on Riemannian manifolds, which are important in a number of application areas in the physical sciences. To do so, we present a general recipe for constructing gauge independent kernels, which induce Gaussian vector fields, i.e. vector-valued Gaussian processes coherent withgeometry, from scalar-valued Riemannian kernels. We extend standard Gaussian process training methods, such as variational inference, to this setting. This enables vector-valued Gaussian processes on Riemannian manifolds to be trained using standard methods and makes them accessible to machine learning practitioners

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282

    Gaze-Based Human-Robot Interaction by the Brunswick Model

    Get PDF
    We present a new paradigm for human-robot interaction based on social signal processing, and in particular on the Brunswick model. Originally, the Brunswick model copes with face-to-face dyadic interaction, assuming that the interactants are communicating through a continuous exchange of non verbal social signals, in addition to the spoken messages. Social signals have to be interpreted, thanks to a proper recognition phase that considers visual and audio information. The Brunswick model allows to quantitatively evaluate the quality of the interaction using statistical tools which measure how effective is the recognition phase. In this paper we cast this theory when one of the interactants is a robot; in this case, the recognition phase performed by the robot and the human have to be revised w.r.t. the original model. The model is applied to Berrick, a recent open-source low-cost robotic head platform, where the gazing is the social signal to be considered
    corecore