15,037 research outputs found

    On the Reliability of LTE Random Access: Performance Bounds for Machine-to-Machine Burst Resolution Time

    Full text link
    Random Access Channel (RACH) has been identified as one of the major bottlenecks for accommodating massive number of machine-to-machine (M2M) users in LTE networks, especially for the case of burst arrival of connection requests. As a consequence, the burst resolution problem has sparked a large number of works in the area, analyzing and optimizing the average performance of RACH. However, the understanding of what are the probabilistic performance limits of RACH is still missing. To address this limitation, in the paper, we investigate the reliability of RACH with access class barring (ACB). We model RACH as a queuing system, and apply stochastic network calculus to derive probabilistic performance bounds for burst resolution time, i.e., the worst case time it takes to connect a burst of M2M devices to the base station. We illustrate the accuracy of the proposed methodology and its potential applications in performance assessment and system dimensioning.Comment: Presented at IEEE International Conference on Communications (ICC), 201

    Real-time and Probabilistic Temporal Logics: An Overview

    Full text link
    Over the last two decades, there has been an extensive study on logical formalisms for specifying and verifying real-time systems. Temporal logics have been an important research subject within this direction. Although numerous logics have been introduced for the formal specification of real-time and complex systems, an up to date comprehensive analysis of these logics does not exist in the literature. In this paper we analyse real-time and probabilistic temporal logics which have been widely used in this field. We extrapolate the notions of decidability, axiomatizability, expressiveness, model checking, etc. for each logic analysed. We also provide a comparison of features of the temporal logics discussed

    Modification of quantum measure in area tensor Regge calculus and positivity

    Full text link
    A comparative analysis of the versions of quantum measure in the area tensor Regge calculus is performed on the simplest configurations of the system. The quantum measure is constructed in such the way that it reduces to the Feynman path integral describing canonical quantisation if the continuous limit along any of the coordinates is taken. As we have found earlier, it is possible to implement also the correspondence principle (proportionality of the Lorentzian (Euclidean) measure to eiSe^{iS} (e−Se^{-S}), SS being the action). For that a certain kind of the connection representation of the Regge action should be used, namely, as a sum of independent contributions of selfdual and antiselfdual sectors (that is, effectively 3-dimensional ones). There are two such representations, the (anti)selfdual connections being SU(2) or SO(3) rotation matrices according to the two ways of decomposing full SO(4) group, as SU(2) ×\times SU(2) or SO(3) ×\times SO(3). The measure from SU(2) rotations although positive on physical surface violates positivity outside this surface in the general configuration space of arbitrary independent area tensors. The measure based on SO(3) rotations is expected to be positive in this general configuration space on condition that the scale of area tensors considered as parameters is bounded from above by the value of the order of Plank unit.Comment: 10 pages, plain LaTe
    • …
    corecore