1,258 research outputs found

    A framework for distributed managing uncertain data in RFID traceability networks

    Get PDF
    The ability to track and trace individual items, especially through large-scale and distributed networks, is the key to realizing many important business applications such as supply chain management, asset tracking, and counterfeit detection. Networked RFID (radio frequency identification), which uses the Internet to connect otherwise isolated RFID systems and software, is an emerging technology to support traceability applications. Despite its promising benefits, there remains many challenges to be overcome before these benefits can be realized. One significant challenge centers around dealing with uncertainty of raw RFID data. In this paper, we propose a novel framework to effectively manage the uncertainty of RFID data in large scale traceability networks. The framework consists of a global object tracking model and a local RFID data cleaning model. In particular, we propose a Markov-based model for tracking objects globally and a particle filter based approach for processing noisy, low-level RFID data locally. Our implementation validates the proposed approach and the experimental results show its effectiveness.Jiangang Ma, Quan Z. Sheng, Damith Ranasinghe, Jen Min Chuah and Yanbo W

    A Bi-Criteria Active Learning Algorithm for Dynamic Data Streams

    Get PDF
    Active learning (AL) is a promising way to efficiently building up training sets with minimal supervision. A learner deliberately queries specific instances to tune the classifier’s model using as few labels as possible. The challenge for streaming is that the data distribution may evolve over time and therefore the model must adapt. Another challenge is the sampling bias where the sampled training set does not reflect the underlying data distribution. In presence of concept drift, sampling bias is more likely to occur as the training set needs to represent the whole evolving data. To tackle these challenges, we propose a novel bi-criteria AL approach (BAL) that relies on two selection criteria, namely label uncertainty criterion and density-based cri- terion . While the first criterion selects instances that are the most uncertain in terms of class membership, the latter dynamically curbs the sampling bias by weighting the samples to reflect on the true underlying distribution. To design and implement these two criteria for learning from streams, BAL adopts a Bayesian online learning approach and combines online classification and online clustering through the use of online logistic regression and online growing Gaussian mixture models respectively. Empirical results obtained on standard synthetic and real-world benchmarks show the high performance of the proposed BAL method compared to the state-of-the-art AL method

    Distributed top-k aggregation queries at large

    Get PDF
    Top-k query processing is a fundamental building block for efficient ranking in a large number of applications. Efficiency is a central issue, especially for distributed settings, when the data is spread across different nodes in a network. This paper introduces novel optimization methods for top-k aggregation queries in such distributed environments. The optimizations can be applied to all algorithms that fall into the frameworks of the prior TPUT and KLEE methods. The optimizations address three degrees of freedom: 1) hierarchically grouping input lists into top-k operator trees and optimizing the tree structure, 2) computing data-adaptive scan depths for different input sources, and 3) data-adaptive sampling of a small subset of input sources in scenarios with hundreds or thousands of query-relevant network nodes. All optimizations are based on a statistical cost model that utilizes local synopses, e.g., in the form of histograms, efficiently computed convolutions, and estimators based on order statistics. The paper presents comprehensive experiments, with three different real-life datasets and using the ns-2 network simulator for a packet-level simulation of a large Internet-style network

    Energy conservation in wireless sensor networks: a rule-based approach

    Get PDF
    corecore