7,556 research outputs found

    Data-driven root-cause analysis for distributed system anomalies

    Full text link
    Modern distributed cyber-physical systems encounter a large variety of anomalies and in many cases, they are vulnerable to catastrophic fault propagation scenarios due to strong connectivity among the sub-systems. In this regard, root-cause analysis becomes highly intractable due to complex fault propagation mechanisms in combination with diverse operating modes. This paper presents a new data-driven framework for root-cause analysis for addressing such issues. The framework is based on a spatiotemporal feature extraction scheme for distributed cyber-physical systems built on the concept of symbolic dynamics for discovering and representing causal interactions among subsystems of a complex system. We present two approaches for root-cause analysis, namely the sequential state switching (S3S^3, based on free energy concept of a Restricted Boltzmann Machine, RBM) and artificial anomaly association (A3A^3, a multi-class classification framework using deep neural networks, DNN). Synthetic data from cases with failed pattern(s) and anomalous node are simulated to validate the proposed approaches, then compared with the performance of vector autoregressive (VAR) model-based root-cause analysis. Real dataset based on Tennessee Eastman process (TEP) is also used for validation. The results show that: (1) S3S^3 and A3A^3 approaches can obtain high accuracy in root-cause analysis and successfully handle multiple nominal operation modes, and (2) the proposed tool-chain is shown to be scalable while maintaining high accuracy.Comment: 6 pages, 3 figure

    Root-cause Analysis for Time-series Anomalies via Spatiotemporal Graphical Modeling in Distributed Complex Systems

    Full text link
    Performance monitoring, anomaly detection, and root-cause analysis in complex cyber-physical systems (CPSs) are often highly intractable due to widely diverse operational modes, disparate data types, and complex fault propagation mechanisms. This paper presents a new data-driven framework for root-cause analysis, based on a spatiotemporal graphical modeling approach built on the concept of symbolic dynamics for discovering and representing causal interactions among sub-systems of complex CPSs. We formulate the root-cause analysis problem as a minimization problem via the proposed inference based metric and present two approximate approaches for root-cause analysis, namely the sequential state switching (S3S^3, based on free energy concept of a restricted Boltzmann machine, RBM) and artificial anomaly association (A3A^3, a classification framework using deep neural networks, DNN). Synthetic data from cases with failed pattern(s) and anomalous node(s) are simulated to validate the proposed approaches. Real dataset based on Tennessee Eastman process (TEP) is also used for comparison with other approaches. The results show that: (1) S3S^3 and A3A^3 approaches can obtain high accuracy in root-cause analysis under both pattern-based and node-based fault scenarios, in addition to successfully handling multiple nominal operating modes, (2) the proposed tool-chain is shown to be scalable while maintaining high accuracy, and (3) the proposed framework is robust and adaptive in different fault conditions and performs better in comparison with the state-of-the-art methods.Comment: 42 pages, 5 figures. arXiv admin note: text overlap with arXiv:1605.0642

    Finding Likely Errors with Bayesian Specifications

    Full text link
    We present a Bayesian framework for learning probabilistic specifications from large, unstructured code corpora, and a method to use this framework to statically detect anomalous, hence likely buggy, program behavior. The distinctive insight here is to build a statistical model that correlates all specifications hidden inside a corpus with the syntax and observed behavior of programs that implement these specifications. During the analysis of a particular program, this model is conditioned into a posterior distribution that prioritizes specifications that are relevant to this program. This allows accurate program analysis even if the corpus is highly heterogeneous. The problem of finding anomalies is now framed quantitatively, as a problem of computing a distance between a "reference distribution" over program behaviors that our model expects from the program, and the distribution over behaviors that the program actually produces. We present a concrete embodiment of our framework that combines a topic model and a neural network model to learn specifications, and queries the learned models to compute anomaly scores. We evaluate this implementation on the task of detecting anomalous usage of Android APIs. Our encouraging experimental results show that the method can automatically discover subtle errors in Android applications in the wild, and has high precision and recall compared to competing probabilistic approaches

    Towards Malware Detection via CPU Power Consumption: Data Collection Design and Analytics (Extended Version)

    Full text link
    This paper presents an experimental design and data analytics approach aimed at power-based malware detection on general-purpose computers. Leveraging the fact that malware executions must consume power, we explore the postulate that malware can be accurately detected via power data analytics. Our experimental design and implementation allow for programmatic collection of CPU power profiles for fixed tasks during uninfected and infected states using five different rootkits. To characterize the power consumption profiles, we use both simple statistical and novel, sophisticated features. We test a one-class anomaly detection ensemble (that baselines non-infected power profiles) and several kernel-based SVM classifiers (that train on both uninfected and infected profiles) in detecting previously unseen malware and clean profiles. The anomaly detection system exhibits perfect detection when using all features and tasks, with smaller false detection rate than the supervised classifiers. The primary contribution is the proof of concept that baselining power of fixed tasks can provide accurate detection of rootkits. Moreover, our treatment presents engineering hurdles needed for experimentation and allows analysis of each statistical feature individually. This work appears to be the first step towards a viable power-based detection capability for general-purpose computers, and presents next steps toward this goal.Comment: Published version appearing in IEEE TrustCom-18. This version contains more details on mathematics and data collectio

    MCODE: Multivariate Conditional Outlier Detection

    Full text link
    Outlier detection aims to identify unusual data instances that deviate from expected patterns. The outlier detection is particularly challenging when outliers are context dependent and when they are defined by unusual combinations of multiple outcome variable values. In this paper, we develop and study a new conditional outlier detection approach for multivariate outcome spaces that works by (1) transforming the conditional detection to the outlier detection problem in a new (unconditional) space and (2) defining outlier scores by analyzing the data in the new space. Our approach relies on the classifier chain decomposition of the multi-dimensional classification problem that lets us transform the output space into a probability vector, one probability for each dimension of the output space. Outlier scores applied to these transformed vectors are then used to detect the outliers. Experiments on multiple multi-dimensional classification problems with the different outlier injection rates show that our methodology is robust and able to successfully identify outliers when outliers are either sparse (manifested in one or very few dimensions) or dense (affecting multiple dimensions)

    Variational Inference for On-line Anomaly Detection in High-Dimensional Time Series

    Full text link
    Approximate variational inference has shown to be a powerful tool for modeling unknown complex probability distributions. Recent advances in the field allow us to learn probabilistic models of sequences that actively exploit spatial and temporal structure. We apply a Stochastic Recurrent Network (STORN) to learn robot time series data. Our evaluation demonstrates that we can robustly detect anomalies both off- and on-line.Comment: Accepted as workshop paper at ICLR 2016; accepted as workshop paper for anomaly detection workshop at ICML 201

    Extended Report: Fine-grained Recognition of Abnormal Behaviors for Early Detection of Mild Cognitive Impairment

    Full text link
    According to the World Health Organization, the rate of people aged 60 or more is growing faster than any other age group in almost every country, and this trend is not going to change in a near future. Since senior citizens are at high risk of non communicable diseases requiring long-term care, this trend will challenge the sustainability of the entire health system. Pervasive computing can provide innovative methods and tools for early detecting the onset of health issues. In this paper we propose a novel method to detect abnormal behaviors of elderly people living at home. The method relies on medical models, provided by cognitive neuroscience researchers, describing abnormal activity routines that may indicate the onset of early symptoms of mild cognitive impairment. A non-intrusive sensor-based infrastructure acquires low-level data about the interaction of the individual with home appliances and furniture, as well as data from environmental sensors. Based on those data, a novel hybrid statistical-symbolical technique is used to detect the abnormal behaviors of the patient, which are communicated to the medical center. Differently from related works, our method can detect abnormal behaviors at a fine-grained level, thus providing an important tool to support the medical diagnosis. In order to evaluate our method we have developed a prototype of the system and acquired a large dataset of abnormal behaviors carried out in an instrumented smart home. Experimental results show that our technique is able to detect most anomalies while generating a small number of false positives

    Setting the threshold for high throughput detectors: A mathematical approach for ensembles of dynamic, heterogeneous, probabilistic anomaly detectors

    Full text link
    Anomaly detection (AD) has garnered ample attention in security research, as such algorithms complement existing signature-based methods but promise detection of never-before-seen attacks. Cyber operations manage a high volume of heterogeneous log data; hence, AD in such operations involves multiple (e.g., per IP, per data type) ensembles of detectors modeling heterogeneous characteristics (e.g., rate, size, type) often with adaptive online models producing alerts in near real time. Because of high data volume, setting the threshold for each detector in such a system is an essential yet underdeveloped configuration issue that, if slightly mistuned, can leave the system useless, either producing a myriad of alerts and flooding downstream systems, or giving none. In this work, we build on the foundations of Ferragut et al. to provide a set of rigorous results for understanding the relationship between threshold values and alert quantities, and we propose an algorithm for setting the threshold in practice. Specifically, we give an algorithm for setting the threshold of multiple, heterogeneous, possibly dynamic detectors completely a priori, in principle. Indeed, if the underlying distribution of the incoming data is known (closely estimated), the algorithm provides provably manageable thresholds. If the distribution is unknown (e.g., has changed over time) our analysis reveals how the model distribution differs from the actual distribution, indicating a period of model refitting is necessary. We provide empirical experiments showing the efficacy of the capability by regulating the alert rate of a system with ≈\approx2,500 adaptive detectors scoring over 1.5M events in 5 hours. Further, we demonstrate on the real network data and detection framework of Harshaw et al. the alternative case, showing how the inability to regulate alerts indicates the detection model is a bad fit to the data.Comment: 11 pages, 5 figures. Proceedings of IEEE Big Data Conference, 201

    Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges

    Full text link
    The widespread popularity of smart meters enables an immense amount of fine-grained electricity consumption data to be collected. Meanwhile, the deregulation of the power industry, particularly on the delivery side, has continuously been moving forward worldwide. How to employ massive smart meter data to promote and enhance the efficiency and sustainability of the power grid is a pressing issue. To date, substantial works have been conducted on smart meter data analytics. To provide a comprehensive overview of the current research and to identify challenges for future research, this paper conducts an application-oriented review of smart meter data analytics. Following the three stages of analytics, namely, descriptive, predictive and prescriptive analytics, we identify the key application areas as load analysis, load forecasting, and load management. We also review the techniques and methodologies adopted or developed to address each application. In addition, we also discuss some research trends, such as big data issues, novel machine learning technologies, new business models, the transition of energy systems, and data privacy and security.Comment: IEEE Transactions on Smart Grid, 201

    A Survey of Stealth Malware: Attacks, Mitigation Measures, and Steps Toward Autonomous Open World Solutions

    Full text link
    As our professional, social, and financial existences become increasingly digitized and as our government, healthcare, and military infrastructures rely more on computer technologies, they present larger and more lucrative targets for malware. Stealth malware in particular poses an increased threat because it is specifically designed to evade detection mechanisms, spreading dormant, in the wild for extended periods of time, gathering sensitive information or positioning itself for a high-impact zero-day attack. Policing the growing attack surface requires the development of efficient anti-malware solutions with improved generalization to detect novel types of malware and resolve these occurrences with as little burden on human experts as possible. In this paper, we survey malicious stealth technologies as well as existing solutions for detecting and categorizing these countermeasures autonomously. While machine learning offers promising potential for increasingly autonomous solutions with improved generalization to new malware types, both at the network level and at the host level, our findings suggest that several flawed assumptions inherent to most recognition algorithms prevent a direct mapping between the stealth malware recognition problem and a machine learning solution. The most notable of these flawed assumptions is the closed world assumption: that no sample belonging to a class outside of a static training set will appear at query time. We present a formalized adaptive open world framework for stealth malware recognition and relate it mathematically to research from other machine learning domains.Comment: Pre-Print of a manuscript Accepted to IEEE Communications Surveys and Tutorials (COMST) on December 1, 201
    • …
    corecore