1,142 research outputs found

    Quantum Probabilistic Subroutines and Problems in Number Theory

    Full text link
    We present a quantum version of the classical probabilistic algorithms aˋ\grave{a} la Rabin. The quantum algorithm is based on the essential use of Grover's operator for the quantum search of a database and of Shor's Fourier transform for extracting the periodicity of a function, and their combined use in the counting algorithm originally introduced by Brassard et al. One of the main features of our quantum probabilistic algorithm is its full unitarity and reversibility, which would make its use possible as part of larger and more complicated networks in quantum computers. As an example of this we describe polynomial time algorithms for studying some important problems in number theory, such as the test of the primality of an integer, the so called 'prime number theorem' and Hardy and Littlewood's conjecture about the asymptotic number of representations of an even integer as a sum of two primes.Comment: 9 pages, RevTex, revised version, accepted for publication on PRA: improvement in use of memory space for quantum primality test algorithm further clarified and typos in the notation correcte

    Four primality testing algorithms

    Get PDF
    In this expository paper we describe four primality tests. The first test is very efficient, but is only capable of proving that a given number is either composite or 'very probably' prime. The second test is a deterministic polynomial time algorithm to prove that a given numer is either prime or composite. The third and fourth primality tests are at present most widely used in practice. Both tests are capable of proving that a given number is prime or composite, but neither algorithm is deterministic. The third algorithm exploits the arithmetic of cyclotomic fields. Its running time is almost, but not quite polynomial time. The fourth algorithm exploits elliptic curves. Its running time is difficult to estimate, but it behaves well in practice.Comment: 21 page

    A faster pseudo-primality test

    Get PDF
    We propose a pseudo-primality test using cyclic extensions of Z/nZ\mathbb Z/n \mathbb Z. For every positive integer klognk \leq \log n, this test achieves the security of kk Miller-Rabin tests at the cost of k1/2+o(1)k^{1/2+o(1)} Miller-Rabin tests.Comment: Published in Rendiconti del Circolo Matematico di Palermo Journal, Springe
    corecore