18,407 research outputs found

    Variance-constrained H∞ filtering for a class of nonlinear time-varying systems with multiple missing measurements: The finite-horizon case

    Get PDF
    Copyright [2010] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust H ∞ finite-horizon filtering problem for a class of uncertain nonlinear discrete time-varying stochastic systems with multiple missing measurements and error variance constraints. All the system parameters are time-varying and the uncertainty enters into the state matrix. The measurement missing phenomenon occurs in a random way, and the missing probability for each sensor is governed by an individual random variable satisfying a certain probabilistic distribution in the interval . The stochastic nonlinearities under consideration here are described by statistical means which can cover several classes of well-studied nonlinearities. Sufficient conditions are derived for a finite-horizon filter to satisfy both the estimation error variance constraints and the prescribed H ∞ performance requirement. These conditions are expressed in terms of the feasibility of a series of recursive linear matrix inequalities (RLMIs). Simulation results demonstrate the effectiveness of the developed filter design scheme.This work was supported in part by the Engineering and Physical Sciences Research Council (EPSRC) of the U.K. by Grant GR/S27658/01, the Royal Society of the U.K., National Natural Science Foundation of China by Grants 60825303 and 60834003, National 973 Project of China by Grant 2009CB320600, Fok Ying Tung Education Foundation by Grant 111064, the Youth Science Fund of Heilongjiang Province of China by Grant QC2009C63, and by the Alexander von Humboldt Foundation of Germany

    Probabilistic metrology or how some measurement outcomes render ultra-precise estimates

    Get PDF
    We show on theoretical grounds that, even in the presence of noise, probabilistic measurement strategies (which have a certain probability of failure or abstention) can provide, upon a heralded successful outcome, estimates with a precision that exceeds the deterministic bounds for the average precision. This establishes a new ultimate bound on the phase estimation precision of particular measurement outcomes (or sequence of outcomes). For probe systems subject to local dephasing, we quantify such precision limit as a function of the probability of failure that can be tolerated. Our results show that the possibility of abstaining can set back the detrimental effects of noise.Comment: Improved version of arXiv:1407.6910 with an extended introduction where we clarify our approach to metrology, and probabilistic metrology in particular. Changed titl
    • …
    corecore