397 research outputs found

    A Covert Data Transport Protocol

    Full text link
    Both enterprise and national firewalls filter network connections. For data forensics and botnet removal applications, it is important to establish the information source. In this paper, we describe a data transport layer which allows a client to transfer encrypted data that provides no discernible information regarding the data source. We use a domain generation algorithm (DGA) to encode AES encrypted data into domain names that current tools are unable to reliably differentiate from valid domain names. The domain names are registered using (free) dynamic DNS services. The data transmission format is not vulnerable to Deep Packet Inspection (DPI).Comment: 8 pages, 10 figures, conferenc

    Systemization of Pluggable Transports for Censorship Resistance

    Full text link
    An increasing number of countries implement Internet censorship at different scales and for a variety of reasons. In particular, the link between the censored client and entry point to the uncensored network is a frequent target of censorship due to the ease with which a nation-state censor can control it. A number of censorship resistance systems have been developed thus far to help circumvent blocking on this link, which we refer to as link circumvention systems (LCs). The variety and profusion of attack vectors available to a censor has led to an arms race, leading to a dramatic speed of evolution of LCs. Despite their inherent complexity and the breadth of work in this area, there is no systematic way to evaluate link circumvention systems and compare them against each other. In this paper, we (i) sketch an attack model to comprehensively explore a censor's capabilities, (ii) present an abstract model of a LC, a system that helps a censored client communicate with a server over the Internet while resisting censorship, (iii) describe an evaluation stack that underscores a layered approach to evaluate LCs, and (iv) systemize and evaluate existing censorship resistance systems that provide link circumvention. We highlight open challenges in the evaluation and development of LCs and discuss possible mitigations.Comment: Content from this paper was published in Proceedings on Privacy Enhancing Technologies (PoPETS), Volume 2016, Issue 4 (July 2016) as "SoK: Making Sense of Censorship Resistance Systems" by Sheharbano Khattak, Tariq Elahi, Laurent Simon, Colleen M. Swanson, Steven J. Murdoch and Ian Goldberg (DOI 10.1515/popets-2016-0028

    Traffic Analysis Resistant Infrastructure

    Get PDF
    Network traffic analysis is using metadata to infer information from traffic flows. Network traffic flows are the tuple of source IP, source port, destination IP, and destination port. Additional information is derived from packet length, flow size, interpacket delay, Ja3 signature, and IP header options. Even connections using TLS leak site name and cipher suite to observers. This metadata can profile groups of users or individual behaviors. Statistical properties yield even more information. The hidden Markov model can track the state of protocols where each state transition results in an observation. Format Transforming Encryption (FTE) encodes data as the payload of another protocol. The emulated protocol is called the host protocol. Observation-based FTE is a particular case of FTE that uses real observations from the host protocol for the transformation. By communicating using a shared dictionary according to the predefined protocol, it can difficult to detect anomalous traffic. Combining observation-based FTEs with hidden Markov models (HMMs) emulates every aspect of a host protocol. Ideal host protocols would cause significant collateral damage if blocked (protected) and do not contain dynamic handshakes or states (static). We use protected static protocols with the Protocol Proxy--a proxy that defines the syntax of a protocol using an observation-based FTE and transforms data to payloads with actual field values. The Protocol Proxy massages the outgoing packet\u27s interpacket delay to match the host protocol using an HMM. The HMM ensure the outgoing traffic is statistically equivalent to the host protocol. The Protocol Proxy is a covert channel, a method of communication with a low probability of detection (LPD). These covert channels trade-off throughput for LPD. The multipath TCP (mpTCP) Linux kernel module splits a TCP streams across multiple interfaces. Two potential architectures involve splitting a covert channel across several interfaces (multipath) or splitting a single TCP stream across multiple covert channels (multisession). Splitting a covert channel across multiple interfaces leads to higher throughput but is classified as mpTCP traffic. Splitting a TCP flow across multiple covert channels is not as performant as the previous case, but it provides added obfuscation and resiliency. Each covert channel is independent of the others, and a channel failure is recoverable. The multipath and multisession frameworks provide independently address the issues associated with covert channels. Each tool addresses a challenge. The Protocol Proxy provides anonymity in a setting were detection could have critical consequences. The mpTCP kernel module offers an architecture that increases throughput despite the channel\u27s low-bandwidth restrictions. Fusing these architectures improves the goodput of the Protocol Proxy without sacrificing the low probability of detection

    DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization

    Full text link
    Recent research has demonstrated that Intel's SGX is vulnerable to various software-based side-channel attacks. In particular, attacks that monitor CPU caches shared between the victim enclave and untrusted software enable accurate leakage of secret enclave data. Known defenses assume developer assistance, require hardware changes, impose high overhead, or prevent only some of the known attacks. In this paper we propose data location randomization as a novel defensive approach to address the threat of side-channel attacks. Our main goal is to break the link between the cache observations by the privileged adversary and the actual data accesses by the victim. We design and implement a compiler-based tool called DR.SGX that instruments enclave code such that data locations are permuted at the granularity of cache lines. We realize the permutation with the CPU's cryptographic hardware-acceleration units providing secure randomization. To prevent correlation of repeated memory accesses we continuously re-randomize all enclave data during execution. Our solution effectively protects many (but not all) enclaves from cache attacks and provides a complementary enclave hardening technique that is especially useful against unpredictable information leakage

    Using Botnet Technologies to Counteract Network Traffic Analysis

    Get PDF
    Botnets have been problematic for over a decade. They are used to launch malicious activities including DDoS (Distributed-Denial-of-Service), spamming, identity theft, unauthorized bitcoin mining and malware distribution. A recent nation-wide DDoS attacks caused by the Mirai botnet on 10/21/2016 involving 10s of millions of IP addresses took down Twitter, Spotify, Reddit, The New York Times, Pinterest, PayPal and other major websites. In response to take-down campaigns by security personnel, botmasters have developed technologies to evade detection. The most widely used evasion technique is DNS fast-flux, where the botmaster frequently changes the mapping between domain names and IP addresses of the C&C server so that it will be too late or too costly to trace the C&C server locations. Domain names generated with Domain Generation Algorithms (DGAs) are used as the \u27rendezvous\u27 points between botmasters and bots. This work focuses on how to apply botnet technologies (fast-flux and DGA) to counteract network traffic analysis, therefore protecting user privacy. A better understanding of botnet technologies also helps us be pro-active in defending against botnets. First, we proposed two new DGAs using hidden Markov models (HMMs) and Probabilistic Context-Free Grammars (PCFGs) which can evade current detection methods and systems. Also, we developed two HMM-based DGA detection methods that can detect the botnet DGA-generated domain names with/without training sets. This helps security personnel understand the botnet phenomenon and develop pro-active tools to detect botnets. Second, we developed a distributed proxy system using fast-flux to evade national censorship and surveillance. The goal is to help journalists, human right advocates and NGOs in West Africa to have a secure and free Internet. Then we developed a covert data transport protocol to transform arbitrary message into real DNS traffic. We encode the message into benign-looking domain names generated by an HMM, which represents the statistical features of legitimate domain names. This can be used to evade Deep Packet Inspection (DPI) and protect user privacy in a two-way communication. Both applications serve as examples of applying botnet technologies to legitimate use. Finally, we proposed a new protocol obfuscation technique by transforming arbitrary network protocol into another (Network Time Protocol and a video game protocol of Minecraft as examples) in terms of packet syntax and side-channel features (inter-packet delay and packet size). This research uses botnet technologies to help normal users have secure and private communications over the Internet. From our botnet research, we conclude that network traffic is a malleable and artificial construct. Although existing patterns are easy to detect and characterize, they are also subject to modification and mimicry. This means that we can construct transducers to make any communication pattern look like any other communication pattern. This is neither bad nor good for security. It is a fact that we need to accept and use as best we can

    Blindspot: Indistinguishable Anonymous Communications

    Get PDF
    Communication anonymity is a key requirement for individuals under targeted surveillance. Practical anonymous communications also require indistinguishability - an adversary should be unable to distinguish between anonymised and non-anonymised traffic for a given user. We propose Blindspot, a design for high-latency anonymous communications that offers indistinguishability and unobservability under a (qualified) global active adversary. Blindspot creates anonymous routes between sender-receiver pairs by subliminally encoding messages within the pre-existing communication behaviour of users within a social network. Specifically, the organic image sharing behaviour of users. Thus channel bandwidth depends on the intensity of image sharing behaviour of users along a route. A major challenge we successfully overcome is that routing must be accomplished in the face of significant restrictions - channel bandwidth is stochastic. We show that conventional social network routing strategies do not work. To solve this problem, we propose a novel routing algorithm. We evaluate Blindspot using a real-world dataset. We find that it delivers reasonable results for applications requiring low-volume unobservable communication.Comment: 13 Page
    • …
    corecore