5,017 research outputs found

    Towards a Comprehensible and Accurate Credit Management Model: Application of four Computational Intelligence Methodologies

    Get PDF
    The paper presents methods for classification of applicants into different categories of credit risk using four different computational intelligence techniques. The selected methodologies involved in the rule-based categorization task are (1) feedforward neural networks trained with second order methods (2) inductive machine learning, (3) hierarchical decision trees produced by grammar-guided genetic programming and (4) fuzzy rule based systems produced by grammar-guided genetic programming. The data used are both numerical and linguistic in nature and they represent a real-world problem, that of deciding whether a loan should be granted or not, in respect to financial details of customers applying for that loan, to a specific private EU bank. We examine the proposed classification models with a sample of enterprises that applied for a loan, each of which is described by financial decision variables (ratios), and classified to one of the four predetermined classes. Attention is given to the comprehensibility and the ease of use for the acquired decision models. Results show that the application of the proposed methods can make the classification task easier and - in some cases - may minimize significantly the amount of required credit data. We consider that these methodologies may also give the chance for the extraction of a comprehensible credit management model or even the incorporation of a related decision support system in bankin

    Effects of Economic Interactions on Credit Risk

    Full text link
    We study a credit risk model which captures effects of economic interactions on a firm's default probability. Economic interactions are represented as a functionally defined graph, and the existence of both cooperative, and competitive, business relations is taken into account. We provide an analytic solution of the model in a limit where the number of business relations of each company is large, but the overall fraction of the economy with which a given company interacts may be small. While the effects of economic interactions are relatively weak in typical (most probable) scenarios, they are pronounced in situations of economic stress, and thus lead to a substantial fattening of the tails of loss distributions in large loan portfolios. This manifests itself in a pronounced enhancement of the Value at Risk computed for interacting economies in comparison with their non-interacting counterparts.Comment: 24 pages, 6 figure

    A Review of Algorithms for Credit Risk Analysis

    Get PDF
    The interest collected by the main borrowers is collected to pay back the principal borrowed from the depositary bank. In financial risk management, credit risk assessment is becoming a significant sector. For the credit risk assessment of client data sets, many credit risk analysis methods are used. The assessment of the credit risk datasets leads to the choice to cancel the customer\u27s loan or to dismiss the customer\u27s request is a challenging task involving a profound assessment of the information set or client information. In this paper, we survey diverse automatic credit risk analysis methods used for credit risk assessment. Data mining approach, as the most often used approach for credit risk analysis was described with the focus to various algorithms, such as neural networks. This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.</p

    Statistical modelling to predict corporate default for Brazilian companies in the context of Basel II using a new set of financial ratios

    Get PDF
    This paper deals with statistical modelling to predict failure of Brazilian companies in the light of the Basel II definition of default using a new set of explanatory variables. A rearrangement in the official format of the Balance Sheet is put forward. From this rearrangement a framework of complementary non-conventional ratios is proposed. Initially, a model using 22 traditional ratios is constructed. Problems associated with multicollinearity were found in this model. Adding a group of 6 non-conventional ratios alongside traditional ratios improves the model substantially. The main findings in this study are: (a) logistic regression performs well in the context of Basel II, yielding a sound model applicable in the decision making process; (b) the complementary list of financial ratios plays a critical role in the model proposed; (c) the variables selected in the model show that when current assets and current liabilities are split into two sub-groups - financial and operational - they are more effective in explaining default than the traditional ratios associated with liquidity; and (d) those variables also indicate that high interest rates in Brazil adversely affect the performance of those companies which have a higher dependency on borrowing

    Collaborative Deep Learning for Recommender Systems

    Full text link
    Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recent advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art
    • 

    corecore