2,155 research outputs found

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Efficient query processing over uncertain road networks

    Get PDF
    One of the fundamental problems on spatial road networks has been the shortest traveling time query, with applications such as location-based services (LBS) and trip planning. Algorithms have been made for the shortest time queries in deterministic road networks, in which vertices and edges are known with certainty. Emerging technologies are available and make it easier to acquire information about the traffic. In this paper, we consider uncertain road networks, in which speeds of vehicles are imprecise and probabilistic. We will focus on one important query type, continuous probabilistic shortest traveling time query (CPSTTQ), which retrieves sets of objects that have the smallest traveling time to a moving query point q from point s to point e on road networks with high confidences. We propose effective pruning methods to prune the search space of our CPSTTQ query, and design an efficient query procedure to answer CPSTTQ via an index structure

    Probabilistic Shortest Time Queries Over Uncertain Road Networks

    Get PDF
    In many real applications such as location-based services (LBS), map utilities, trip planning, and transportation systems, it is very useful and important to provide query services over spatial road networks. Nowadays we can easily obtain rich traffic information such as the speeds of vehicles on roads. However, due to the inaccuracy of devices or integration in consistencies, the traffic data (i.e., speeds) are often imprecise and uncertain. In this paper, we model road networks by uncertain graphs, which contain edges that are associated with probabilistic velocities. We formalize the problem of probabilistic shortest time query, and we propose time bound pruning and probabilistic bound pruning to filter out false alarms. Moreover, we design offline pre-computation to facilitate PSTQ processing

    Optimal Time-dependent Sequenced Route Queries in Road Networks

    Full text link
    In this paper we present an algorithm for optimal processing of time-dependent sequenced route queries in road networks, i.e., given a road network where the travel time over an edge is time-dependent and a given ordered list of categories of interest, we find the fastest route between an origin and destination that passes through a sequence of points of interest belonging to each of the specified categories of interest. For instance, considering a city road network at a given departure time, one can find the fastest route between one's work and his/her home, passing through a bank, a supermarket and a restaurant, in this order. The main contribution of our work is the consideration of the time dependency of the network, a realistic characteristic of urban road networks, which has not been considered previously when addressing the optimal sequenced route query. Our approach uses the A* search paradigm that is equipped with an admissible heuristic function, thus guaranteed to yield the optimal solution, along with a pruning scheme for further reducing the search space. In order to compare our proposal we extended a previously proposed solution aimed at non-time dependent sequenced route queries, enabling it to deal with the time-dependency. Our experiments using real and synthetic data sets have shown our proposed solution to be up to two orders of magnitude faster than the temporally extended previous solution.Comment: 10 pages, 12 figures To be published as a short paper in the 23rd ACM SIGSPATIA

    Outlier detection techniques for wireless sensor networks: A survey

    Get PDF
    In the field of wireless sensor networks, those measurements that significantly deviate from the normal pattern of sensed data are considered as outliers. The potential sources of outliers include noise and errors, events, and malicious attacks on the network. Traditional outlier detection techniques are not directly applicable to wireless sensor networks due to the nature of sensor data and specific requirements and limitations of the wireless sensor networks. This survey provides a comprehensive overview of existing outlier detection techniques specifically developed for the wireless sensor networks. Additionally, it presents a technique-based taxonomy and a comparative table to be used as a guideline to select a technique suitable for the application at hand based on characteristics such as data type, outlier type, outlier identity, and outlier degree

    Multimedia Correlation Analysis in Unstructured Peer-to-Peer Network

    Get PDF
    Recent years saw the rapid development of peer-topeer (P2P) networks in a great variety of applications. However, similarity-based k-nearest-neighbor retrieval (k-NN) is still a challenging task in P2P networks due to the multiple constraints such as the dynamic topologies and the unpredictable data updates. Caching is an attractive solution that reduces network traffic and hence could remedy the technological constraints of P2P networks. However, traditional caching techniques have some major shortcomings that make them unsuitable for similarity search, such as the lack of semantic locality representation and the rigidness of exact matching on data objects. To facilitate the efficient similarity search, we propose semantic-aware caching scheme (SAC) in this paper. The proposed scheme is hierarchy-free, fully dynamic, non-flooding, and do not add much system overhead. By exploring the content distribution, SAC drastically reduces the cost of similarity-based k-NN retrieval in P2P networks. The performance of SAC is evaluated through simulation study and compared against several search schemes as advanced in the literature
    • ā€¦
    corecore