15,093 research outputs found

    Improving Sequential Determinantal Point Processes for Supervised Video Summarization

    Full text link
    It is now much easier than ever before to produce videos. While the ubiquitous video data is a great source for information discovery and extraction, the computational challenges are unparalleled. Automatically summarizing the videos has become a substantial need for browsing, searching, and indexing visual content. This paper is in the vein of supervised video summarization using sequential determinantal point process (SeqDPP), which models diversity by a probabilistic distribution. We improve this model in two folds. In terms of learning, we propose a large-margin algorithm to address the exposure bias problem in SeqDPP. In terms of modeling, we design a new probabilistic distribution such that, when it is integrated into SeqDPP, the resulting model accepts user input about the expected length of the summary. Moreover, we also significantly extend a popular video summarization dataset by 1) more egocentric videos, 2) dense user annotations, and 3) a refined evaluation scheme. We conduct extensive experiments on this dataset (about 60 hours of videos in total) and compare our approach to several competitive baselines

    Efficient Indexing for Structured and Unstructured Data

    Get PDF
    The collection of digital data is growing at an exponential rate. Data originates from wide range of data sources such as text feeds, biological sequencers, internet traffic over routers, through sensors and many other sources. To mine intelligent information from these sources, users have to query the data. Indexing techniques aim to reduce the query time by preprocessing the data. Diversity of data sources in real world makes it imperative to develop application specific indexing solutions based on the data to be queried. Data can be structured i.e., relational tables or unstructured i.e., free text. Moreover, increasingly many applications need to seamlessly analyze both kinds of data making data integration a central issue. Integrating text with structured data needs to account for missing values, errors in the data etc. Probabilistic models have been proposed recently for this purpose. These models are also useful for applications where uncertainty is inherent in data e.g. sensor networks. This dissertation aims to propose efficient indexing solutions for several problems that lie at the intersection of database and information retrieval such as joining ranked inputs, full-text documents searching etc. Other well-known problems of ranked retrieval and pattern matching are also studied under probabilistic settings. For each problem, the worst-case theoretical bounds of the proposed solutions are established and/or their practicality is demonstrated by thorough experimentation

    Information Retrieval Models

    Get PDF
    Many applications that handle information on the internet would be completely\ud inadequate without the support of information retrieval technology. How would\ud we find information on the world wide web if there were no web search engines?\ud How would we manage our email without spam filtering? Much of the development\ud of information retrieval technology, such as web search engines and spam\ud filters, requires a combination of experimentation and theory. Experimentation\ud and rigorous empirical testing are needed to keep up with increasing volumes of\ud web pages and emails. Furthermore, experimentation and constant adaptation\ud of technology is needed in practice to counteract the effects of people that deliberately\ud try to manipulate the technology, such as email spammers. However,\ud if experimentation is not guided by theory, engineering becomes trial and error.\ud New problems and challenges for information retrieval come up constantly.\ud They cannot possibly be solved by trial and error alone. So, what is the theory\ud of information retrieval?\ud There is not one convincing answer to this question. There are many theories,\ud here called formal models, and each model is helpful for the development of\ud some information retrieval tools, but not so helpful for the development others.\ud In order to understand information retrieval, it is essential to learn about these\ud retrieval models. In this chapter, some of the most important retrieval models\ud are gathered and explained in a tutorial style

    Beyond English text: Multilingual and multimedia information retrieval.

    Get PDF
    Non

    A survey on the use of relevance feedback for information access systems

    Get PDF
    Users of online search engines often find it difficult to express their need for information in the form of a query. However, if the user can identify examples of the kind of documents they require then they can employ a technique known as relevance feedback. Relevance feedback covers a range of techniques intended to improve a user's query and facilitate retrieval of information relevant to a user's information need. In this paper we survey relevance feedback techniques. We study both automatic techniques, in which the system modifies the user's query, and interactive techniques, in which the user has control over query modification. We also consider specific interfaces to relevance feedback systems and characteristics of searchers that can affect the use and success of relevance feedback systems

    Towards an Information Retrieval Theory of Everything

    Get PDF
    I present three well-known probabilistic models of information retrieval in tutorial style: The binary independence probabilistic model, the language modeling approach, and Google's page rank. Although all three models are based on probability theory, they are very different in nature. Each model seems well-suited for solving certain information retrieval problems, but not so useful for solving others. So, essentially each model solves part of a bigger puzzle, and a unified view on these models might be a first step towards an Information Retrieval Theory of Everything

    Searching strategies for the Bulgarian language

    Get PDF
    This paper reports on the underlying IR problems encountered when indexing and searching with the Bulgarian language. For this language we propose a general light stemmer and demonstrate that it can be quite effective, producing significantly better MAP (around + 34%) than an approach not applying stemming. We implement the GL2 model derived from the Divergence from Randomness paradigm and find its retrieval effectiveness better than other probabilistic, vector-space and language models. The resulting MAP is found to be about 50% better than the classical tf idf approach. Moreover, increasing the query size enhances the MAP by around 10% (from T to TD). In order to compare the retrieval effectiveness of our suggested stopword list and the light stemmer developed for the Bulgarian language, we conduct a set of experiments on another stopword list and also a more complex and aggressive stemmer. Results tend to indicate that there is no statistically significant difference between these variants and our suggested approach. This paper evaluates other indexing strategies such as 4-gram indexing and indexing based on the automatic decompounding of compound words. Finally, we analyze certain queries to discover why we obtained poor results, when indexing Bulgarian documents using the suggested word-based approac

    Disambiguation strategies for cross-language information retrieval

    Get PDF
    This paper gives an overview of tools and methods for Cross-Language Information Retrieval (CLIR) that are developed within the Twenty-One project. The tools and methods are evaluated with the TREC CLIR task document collection using Dutch queries on the English document base. The main issue addressed here is an evaluation of two approaches to disambiguation. The underlying question is whether a lot of effort should be put in finding the correct translation for each query term before searching, or whether searching with more than one possible translation leads to better results? The experimental study suggests that the quality of search methods is more important than the quality of disambiguation methods. Good retrieval methods are able to disambiguate translated queries implicitly during searching
    corecore