21,039 research outputs found

    Probabilistic Models for Scalable Knowledge Graph Construction

    Get PDF
    In the past decade, systems that extract information from millions of Internet documents have become commonplace. Knowledge graphs -- structured knowledge bases that describe entities, their attributes and the relationships between them -- are a powerful tool for understanding and organizing this vast amount of information. However, a significant obstacle to knowledge graph construction is the unreliability of the extracted information, due to noise and ambiguity in the underlying data or errors made by the extraction system and the complexity of reasoning about the dependencies between these noisy extractions. My dissertation addresses these challenges by exploiting the interdependencies between facts to improve the quality of the knowledge graph in a scalable framework. I introduce a new approach called knowledge graph identification (KGI), which resolves the entities, attributes and relationships in the knowledge graph by incorporating uncertain extractions from multiple sources, entity co-references, and ontological constraints. I define a probability distribution over possible knowledge graphs and infer the most probable knowledge graph using a combination of probabilistic and logical reasoning. Such probabilistic models are frequently dismissed due to scalability concerns, but my implementation of KGI maintains tractable performance on large problems through the use of hinge-loss Markov random fields, which have a convex inference objective. This allows the inference of large knowledge graphs using 4M facts and 20M ground constraints in 2 hours. To further scale the solution, I develop a distributed approach to the KGI problem which runs in parallel across multiple machines, reducing inference time by 90%. Finally, I extend my model to the streaming setting, where a knowledge graph is continuously updated by incorporating newly extracted facts. I devise a general approach for approximately updating inference in convex probabilistic models, and quantify the approximation error by defining and bounding inference regret for online models. Together, my work retains the attractive features of probabilistic models while providing the scalability necessary for large-scale knowledge graph construction. These models have been applied on a number of real-world knowledge graph projects, including the NELL project at Carnegie Mellon and the Google Knowledge Graph

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Supervised Typing of Big Graphs using Semantic Embeddings

    Full text link
    We propose a supervised algorithm for generating type embeddings in the same semantic vector space as a given set of entity embeddings. The algorithm is agnostic to the derivation of the underlying entity embeddings. It does not require any manual feature engineering, generalizes well to hundreds of types and achieves near-linear scaling on Big Graphs containing many millions of triples and instances by virtue of an incremental execution. We demonstrate the utility of the embeddings on a type recommendation task, outperforming a non-parametric feature-agnostic baseline while achieving 15x speedup and near-constant memory usage on a full partition of DBpedia. Using state-of-the-art visualization, we illustrate the agreement of our extensionally derived DBpedia type embeddings with the manually curated domain ontology. Finally, we use the embeddings to probabilistically cluster about 4 million DBpedia instances into 415 types in the DBpedia ontology.Comment: 6 pages, to be published in Semantic Big Data Workshop at ACM, SIGMOD 2017; extended version in preparation for Open Journal of Semantic Web (OJSW
    • …
    corecore