8,465 research outputs found

    Fast Context Adaptation via Meta-Learning

    Full text link
    We propose CAVIA for meta-learning, a simple extension to MAML that is less prone to meta-overfitting, easier to parallelise, and more interpretable. CAVIA partitions the model parameters into two parts: context parameters that serve as additional input to the model and are adapted on individual tasks, and shared parameters that are meta-trained and shared across tasks. At test time, only the context parameters are updated, leading to a low-dimensional task representation. We show empirically that CAVIA outperforms MAML for regression, classification, and reinforcement learning. Our experiments also highlight weaknesses in current benchmarks, in that the amount of adaptation needed in some cases is small.Comment: Published at the International Conference on Machine Learning (ICML) 201

    Hypernetwork approach to Bayesian MAML

    Full text link
    The main goal of Few-Shot learning algorithms is to enable learning from small amounts of data. One of the most popular and elegant Few-Shot learning approaches is Model-Agnostic Meta-Learning (MAML). The main idea behind this method is to learn the shared universal weights of a meta-model, which are then adapted for specific tasks. However, the method suffers from over-fitting and poorly quantifies uncertainty due to limited data size. Bayesian approaches could, in principle, alleviate these shortcomings by learning weight distributions in place of point-wise weights. Unfortunately, previous modifications of MAML are limited due to the simplicity of Gaussian posteriors, MAML-like gradient-based weight updates, or by the same structure enforced for universal and adapted weights. In this paper, we propose a novel framework for Bayesian MAML called BayesianHMAML, which employs Hypernetworks for weight updates. It learns the universal weights point-wise, but a probabilistic structure is added when adapted for specific tasks. In such a framework, we can use simple Gaussian distributions or more complicated posteriors induced by Continuous Normalizing Flows.Comment: arXiv admin note: text overlap with arXiv:2205.1574
    corecore