2,033 research outputs found

    An algorithm for simulating the Ising model on a type-II quantum computer

    Full text link
    Presented here is an algorithm for a type-II quantum computer which simulates the Ising model in one and two dimensions. It is equivalent to the Metropolis Monte-Carlo method and takes advantage of quantum superposition for random number generation. This algorithm does not require the ensemble of states to be measured at the end of each iteration, as is required for other type-II algorithms. Only the binary result is measured at each node which means this algorithm could be implemented using a range of different quantum computing architectures. The Ising model provides an example of how cellular automata rules can be formulated to be run on a type-II quantum computer.Comment: 14 pages, 11 figures. Accepted for publication in Computer Physics Communication

    On the Phase Structure of the 3D Edwards Anderson Spin Glass

    Full text link
    We characterize numerically the properties of the phase transition of the three dimensional Ising spin glass with Gaussian couplings and of the low temperature phase. We compute critical exponents on large lattices. We study in detail the overlap probability distribution and the equilibrium overlap-overlap correlation functions. We find a clear agreement with off-equilibrium results from previous work. These results strongly support the existence of a continuous spontaneous replica symmetry breaking in three dimensional spin glasses.Comment: 30 pages and 17 figures. Final version to be published in PR

    Thermodynamics of natural images

    Get PDF
    The scale invariance of natural images suggests an analogy to the statistical mechanics of physical systems at a critical point. Here we examine the distribution of pixels in small image patches and show how to construct the corresponding thermodynamics. We find evidence for criticality in a diverging specific heat, which corresponds to large fluctuations in how "surprising" we find individual images, and in the quantitative form of the entropy vs. energy. The energy landscape derived from our thermodynamic framework identifies special image configurations that have intrinsic error correcting properties, and neurons which could detect these features have a strong resemblance to the cells found in primary visual cortex
    corecore