10,330 research outputs found

    Inspection scheduling based onreliability updating of gas turbinewelded structures

    Get PDF
    This article presents a novel methodology for the inspection scheduling of gas turbine welded structures, based on reliability calculations and overhaul findings. The model was based on a probabilistic crack propagation analysis for welds in a plate and considered the uncertainty in material properties, defect inspection capabilities, weld geometry, and loads. It developed a specific stress intensity factor and an improved first-order reliability method. The proposed routine alleviated the computational cost of stochastic crack propagation analysis, with accuracy. It is useful to achieve an effective design for manufacturing, to develop structural health monitoring applications, and to adapt inspection schedules to airplane fleet experience.We are grateful to the Mechanical Technology Department of ITPAero (R) for supporting and helping us with this study. The invaluable guidance and feedback from Jose Ramon Andujar is recognized with great appreciation

    RC bridge management optimisation considering condition assessment uncertainties

    Get PDF
    Decision-making in bridge management has changed considerably in the past two decades and owners are additionally considering what types of interventions to implement, but correct decisions still need certain input. In Estonia, like in many countries, bridge management is based on inventory records and condition information. The main emphasis of this investigation is on improving the regular condition assessment. More accurate nondestructive testing methods and optimised inspection scheduling are proposed, to reduce condition assessment uncertainties. A conversion matrix for translating additional assessment results to the rating scale of the current Estonian Transport Administration management system is introduced and uncertainties in the condition state are analysed probabilistically. In addition, stochastic degradation models based on existing information are investigated to help considering uncertainties as a part of the overall management process. What impact the adopting of quantitative assessment, rather than qualitative visual inspection, may have on the suggested interventions schedule is also analysed. The probabilistic characteristics of the condition profiles of the most common bridge elements are computed using Markov Chain Monte Carlo stochastic simulation. The optimisation of inspection scheduling is performed considering the uncertainty of the initial deterioration model. When a threshold value, defined by the owner, is reached, the model is updated with assessment data to maintain the level of uncertainty below that threshold. The results confirm that deviations in the degradation model and assessment results influence the bridge condition uncertainty. Likewise, times of both inspection and intervention are influenced, which will ultimately impact the overall management reliability and costs.The authors acknowledge the support of Eurostruct endorsed by the EU Framework Program Horizon 2020, the Archimedes Foundation and Professor Karl Oiger Scholarship Foundation. The publication costs of this article were covered by the Estonian Academy of Sciences

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Transform-domain analysis of packet delay in network nodes with QoS-aware scheduling

    Get PDF
    In order to differentiate the perceived QoS between traffic classes in heterogeneous packet networks, equipment discriminates incoming packets based on their class, particularly in the way queued packets are scheduled for further transmission. We review a common stochastic modelling framework in which scheduling mechanisms can be evaluated, especially with regard to the resulting per-class delay distribution. For this, a discrete-time single-server queue is considered with two classes of packet arrivals, either delay-sensitive (1) or delay-tolerant (2). The steady-state analysis relies on the use of well-chosen supplementary variables and is mainly done in the transform domain. Secondly, we propose and analyse a new type of scheduling mechanism that allows precise control over the amount of delay differentiation between the classes. The idea is to introduce N reserved places in the queue, intended for future arrivals of class 1

    Parallel and Distributed Performance of a Depth Estimation Algorithm

    Get PDF
    Expansion of dataset sizes and increasing complexity of processing algorithms have led to consideration of parallel and distributed implementations. The rationale for distributing the computational load may be to thin-provision computational resources, to accelerate data processing rate, or to efficiently reuse already available but otherwise idle computational resources. Whatever the rationale, an efficient solution of this type brings with it questions of data distribution, job partitioning, reliability, and robustness. This paper addresses the first two of these questions in the context of a local cluster-computing environment. Using the CHRT depth estimator, it considers active and passive data distribution and their effect on data throughput, focusing mainly on the compromises required to maintain minimal communications requirements between nodes. As metric, the algorithm considers the overall computation time for a given dataset (i.e., the time lag that a user would experience), and shows that although there are significant speedups to be had by relatively simple modifications to the algorithm, there are limitations to the parallelism that can be achieved efficiently, and a balance between inter-node parallelism (i.e., multiple nodes running in parallel) and intranode parallelism (i.e., multiple threads within one node) for most efficient utilization of available resources

    Proceedings of the 2009 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    The joint workshop of the Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe, and the Vision and Fusion Laboratory (Institute for Anthropomatics, Karlsruhe Institute of Technology (KIT)), is organized annually since 2005 with the aim to report on the latest research and development findings of the doctoral students of both institutions. This book provides a collection of 16 technical reports on the research results presented on the 2009 workshop
    • …
    corecore