19,425 research outputs found

    A dynamic day-ahead paratransit planning problem

    Get PDF
    Abstract We consider a dynamic planning problem for the transport of elderly and disabled people. The focus is on a decision to make one day ahead: which requests to serve with own vehicles, and which ones to assign to subcontractors, under uncertainty of late requests which are gradually revealed during the day of operation. We call this problem the Dynamic Day-ahead Paratransit Planning problem. The developed model is a nonstandard two-stage recourse model in which ideas from stochastic programming and online optimization are combined: in the first stage clustered requests are assigned to vehicles, and in the dynamic second-stage problem an event-driven approach is used to cluster the late requests once they are revealed and subsequently assign them to vehicles. A genetic algorithm is used to solve the model. Computational results are presented for randomly generated data sets. Furthermore, a comparison is made to a similar problem we studied earlier in which the simplifying but unrealistic assumption has been made that all late requests are revealed at the beginning of the day of operation.

    Optimal Selection of Spectrum Sensing Duration for an Energy Harvesting Cognitive Radio

    Full text link
    In this paper, we consider a time-slotted cognitive radio (CR) setting with buffered and energy harvesting primary and CR users. At the beginning of each time slot, the CR user probabilistically chooses the spectrum sensing duration from a predefined set. If the primary user (PU) is sensed to be inactive, the CR user accesses the channel immediately. The CR user optimizes the sensing duration probabilities in order to maximize its mean data service rate with constraints on the stability of the primary and cognitive queues. The optimization problem is split into two subproblems. The first is a linear-fractional program, and the other is a linear program. Both subproblems can be solved efficiently.Comment: Accepted in GLOBECOM 201

    Event Prediction in an IoT Environment Using Naïve Bayesian Models

    Get PDF
    AbstractIn many Internet of Things (IoT) scenarios, there is a need to predict events generated by objects. However, because of the dynamicity of IoT environments, it is difficult to predict with certainty if/when such events will occur. Probabilistic reasoning allows us to infer dependent probabilities of events, from other events that are either easier to detect or to predict. In this paper we propose an architecture that employs a Bayesian event prediction model that uses historical event data generated by the IoT cloud to calculate the probability of future events. We demonstrate the architecture by implementing a prototype system to predict outbound flight delay events, based on inbound flight delays, based on historical data collected from aviation statistics databases

    Manufacturing System Lean Improvement Design Using Discrete Event Simulation

    Get PDF
    Lean manufacturing (LM) has been used widely in the past for the continuous improvement of existing production systems. A Lean Assessment Tool (LAT) is used for assessing the overall performance of lean practices within a system, while a Discrete Event Simulation (DES) can be used for the optimization of such systems operations. Lean improvements are typically suggested after a LAT has been deployed, but validation of such improvements is rarely carried out. In the present article a methodology is presented that uses DES to model lean practices within a manufacturing system. Lean improvement scenarios are then be simulated and investigated prior to implementation, thereby enabling a systematic design of lean improvements

    Causal Inference in Disease Spread across a Heterogeneous Social System

    Full text link
    Diffusion processes are governed by external triggers and internal dynamics in complex systems. Timely and cost-effective control of infectious disease spread critically relies on uncovering the underlying diffusion mechanisms, which is challenging due to invisible causality between events and their time-evolving intensity. We infer causal relationships between infections and quantify the reflexivity of a meta-population, the level of feedback on event occurrences by its internal dynamics (likelihood of a regional outbreak triggered by previous cases). These are enabled by our new proposed model, the Latent Influence Point Process (LIPP) which models disease spread by incorporating macro-level internal dynamics of meta-populations based on human mobility. We analyse 15-year dengue cases in Queensland, Australia. From our causal inference, outbreaks are more likely driven by statewide global diffusion over time, leading to complex behavior of disease spread. In terms of reflexivity, precursory growth and symmetric decline in populous regions is attributed to slow but persistent feedback on preceding outbreaks via inter-group dynamics, while abrupt growth but sharp decline in peripheral areas is led by rapid but inconstant feedback via intra-group dynamics. Our proposed model reveals probabilistic causal relationships between discrete events based on intra- and inter-group dynamics and also covers direct and indirect diffusion processes (contact-based and vector-borne disease transmissions).Comment: arXiv admin note: substantial text overlap with arXiv:1711.0635

    "Last-Mile" preparation for a potential disaster

    Get PDF
    Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of small-scale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socio-economic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity
    corecore