223 research outputs found

    Probabilistic Hybrid Action Models for Predicting Concurrent Percept-driven Robot Behavior

    Full text link
    This article develops Probabilistic Hybrid Action Models (PHAMs), a realistic causal model for predicting the behavior generated by modern percept-driven robot plans. PHAMs represent aspects of robot behavior that cannot be represented by most action models used in AI planning: the temporal structure of continuous control processes, their non-deterministic effects, several modes of their interferences, and the achievement of triggering conditions in closed-loop robot plans. The main contributions of this article are: (1) PHAMs, a model of concurrent percept-driven behavior, its formalization, and proofs that the model generates probably, qualitatively accurate predictions; and (2) a resource-efficient inference method for PHAMs based on sampling projections from probabilistic action models and state descriptions. We show how PHAMs can be applied to planning the course of action of an autonomous robot office courier based on analytical and experimental results

    Verification-driven design and programming of autonomous robots

    Get PDF

    Backwards is the way forward: feedback in the cortical hierarchy predicts the expected future

    Get PDF
    Clark offers a powerful description of the brain as a prediction machine, which offers progress on two distinct levels. First, on an abstract conceptual level, it provides a unifying framework for perception, action, and cognition (including subdivisions such as attention, expectation, and imagination). Second, hierarchical prediction offers progress on a concrete descriptive level for testing and constraining conceptual elements and mechanisms of predictive coding models (estimation of predictions, prediction errors, and internal models)

    Partially Observable Stochastic Games with Neural Perception Mechanisms

    Full text link
    Stochastic games are a well established model for multi-agent sequential decision making under uncertainty. In reality, though, agents have only partial observability of their environment, which makes the problem computationally challenging, even in the single-agent setting of partially observable Markov decision processes. Furthermore, in practice, agents increasingly perceive their environment using data-driven approaches such as neural networks trained on continuous data. To tackle this problem, we propose the model of neuro-symbolic partially-observable stochastic games (NS-POSGs), a variant of continuous-space concurrent stochastic games that explicitly incorporates perception mechanisms. We focus on a one-sided setting, comprising a partially-informed agent with discrete, data-driven observations and a fully-informed agent with continuous observations. We present a new point-based method, called one-sided NS-HSVI, for approximating values of one-sided NS-POSGs and implement it based on the popular particle-based beliefs, showing that it has closed forms for computing values of interest. We provide experimental results to demonstrate the practical applicability of our method for neural networks whose preimage is in polyhedral form.Comment: 41 pages, 5 figure

    Proceedings of KogWis 2012. 11th Biannual Conference of the German Cognitive Science Society

    Get PDF
    The German cognitive science conference is an interdisciplinary event where researchers from different disciplines -- mainly from artificial intelligence, cognitive psychology, linguistics, neuroscience, philosophy of mind, and anthropology -- and application areas -- such as eduction, clinical psychology, and human-machine interaction -- bring together different theoretical and methodological perspectives to study the mind. The 11th Biannual Conference of the German Cognitive Science Society took place from September 30 to October 3 2012 at Otto-Friedrich-Universität in Bamberg. The proceedings cover all contributions to this conference, that is, five invited talks, seven invited symposia and two symposia, a satellite symposium, a doctoral symposium, three tutorials, 46 abstracts of talks and 23 poster abstracts

    Apprentissage permanent par feedback endogène, application à un système robotique

    Get PDF
    Les applications robotiques sont liées à l'environnement sociotechnique dynamique dans lequel elles sont intégrées. Dans ce contexte, l'auto-adaptation est une préoccupation centrale et la conception d'applications intelligentes dans de tels environnements nécessite de les considérer comme des systèmes complexes. Le domaine de la robotique est très vaste. L'accent est mis sur les systèmes qui s'adaptent aux contraintes de leur environnement et non sur la mécanique ou le traitement du signal. À la lumière de ce contexte, l'objectif de cette thèse est la conception d'un mécanisme d'apprentissage capable d'apprendre de manière continue en utilisant des feedbacks endogènes (i.e. des interactions internes) dans des environnements sociotechniques dynamiques. Ce mécanisme d'apprentissage doit aussi vérifier plusieurs propriétés qui sont essentielles dans ce contexte comme : l'agnosticité, l'apprentissage tout au long de la vie, l'apprentissage en ligne, l'auto-observation, la généralisation des connaissances, le passage à l'échelle, la tolérance au volume de données et l'explicabilité. Les principales contributions consistent en la construction de l'apprentissage endogène par contextes et la conception du mécanisme d'apprentissage ELLSA pour Endogenous Lifelong Learner by Self-Adaptation. Le mécanisme d'apprentissage proposé est basé sur les systèmes multi-agents adaptatifs combinés à l'apprentissage endogène par contextes. La création de l'apprentissage endogène par contextes est motivée par la caractérisation d'imprécisions d'apprentissage qui sont détectées par des négociations locales entre agents. L'apprentissage endogène par contextes comprends aussi un mécanisme de génération de données artificielles pour améliorer les modèles d'apprentissage tout en réduisant la quantité nécessaire de données d'apprentissage. Dans un contexte d'apprentissage tout au long de la vie, ELLSA permet une mise à jour dynamique des modèles d'apprentissage. Il introduit des stratégies d'apprentissage actif et d'auto-apprentissage pour résoudre les imprécisions d'apprentissage. L'utilisation de ces stratégies dépend de la disponibilité des données d'apprentissage. Afin d'évaluer ses contributions, ce mécanisme est appliqué à l'apprentissage de fonctions mathématiques et à un problème réel dans le domaine de la robotique : le problème de la cinématique inverse. Le scénario d'application est l'apprentissage du contrôle de bras robotiques multi-articulés. Les expériences menées montrent que l'apprentissage endogène par contextes permet d'améliorer les performances d'apprentissage grâce à des mécanismes internes. Elles mettent aussi en évidence des propriétés du système selon les objectifs de la thèse : feedback endogènes, agnosticité, apprentissage tout au long de la vie, apprentissage en ligne, auto-observation, généralisation, passage à l'échelle, tolérance au volume de données et explicabilité.Robotic applications are linked to the dynamic sociotechnical environment in which they are embedded. In this scope, self-adaptation is a central concern and the design of intelligent applications in such environments requires to consider them as complex systems. The field of robotics is very broad. The focus is made on systems that adapt to the constraints of their environment and not on mechanics or signal processing. In light of this context, the objective of this thesis is the design of a learning mechanism capable of continuous learning using endogenous feedback (i.e. internal interactions) in dynamic sociotechnical environments. This learning mechanism must also verify several properties that are essential in this context such as: agnosticity, lifelong learning, online learning, self-observation, knowledge generalization, scalability, data volume tolerance and explainability. The main contributions consist of the construction of Endogenous Context Learning and the design of the learning mechanism ELLSA for Endogenous Lifelong Learner by Self-Adaptation. The proposed learning mechanism is based on Adaptive Multi-Agent Systems combined with Context Learning. The creation of Endogenous Context Learning is motivated by the characterization of learning inaccuracies that are detected by local negotiations between agents. Endogenous Context Learning also includes an artificial data generation mechanism to improve learning models while reducing the amount of the required learning data. In a Lifelong Learning setting, ELLSA enables dynamic updating of learning models. It introduces Active Learning and Self-Learning strategies to resolve learning inaccuracies. The use of these strategies depends on the availability of learning data. In order to evaluate its contributions, this mechanism is applied to the learning of mathematical functions and to a real problem in the field of robotics: the Inverse Kinematics problem. The application scenario is the learning of the control of multi-jointed robotic arms. The conducted experiments show that Endogenous Context Learning enables to improve the learning performances thanks to internal mechanisms. They also highlight the properties of the system according to the objectives of the thesis: endogenous feedback, agnosticity, lifelong learning, online learning, self-observation, knowledge generalization, scalability, data volume tolerance and explainability

    Plan Projection, Execution, and Learning for Mobile Robot Control

    Get PDF
    Most state-of-the-art hybrid control systems for mobile robots are decomposed into different layers. While the deliberation layer reasons about the actions required for the robot in order to achieve a given goal, the behavioral layer is designed to enable the robot to quickly react to unforeseen events. This decomposition guarantees a safe operation even in the presence of unforeseen and dynamic obstacles and enables the robot to cope with situations it was not explicitly programmed for. The layered design, however, also leaves us with the problem of plan execution. The problem of plan execution is the problem of arbitrating between the deliberation- and the behavioral layer. Abstract symbolic actions have to be translated into streams of local control commands. Simultaneously, execution failures have to be handled on an appropriate level of abstraction. It is now widely accepted that plan execution should form a third layer of a hybrid robot control system. The resulting layered architectures are called three-tiered architectures, or 3T architectures for short. Although many high level programming frameworks have been proposed to support the implementation of the intermediate layer, there is no generally accepted algorithmic basis for plan execution in three-tiered architectures. In this thesis, we propose to base plan execution on plan projection and learning and present a general framework for the self-supervised improvement of plan execution. This framework has been implemented in APPEAL, an Architecture for Plan Projection, Execution And Learning, which extends the well known RHINO control system by introducing an execution layer. This thesis contributes to the field of plan-based mobile robot control which investigates the interrelation between planning, reasoning, and learning techniques based on an explicit representation of the robot's intended course of action, a plan. In McDermott's terminology, a plan is that part of a robot control program, which the robot cannot only execute, but also reason about and manipulate. According to that broad view, a plan may serve many purposes in a robot control system like reasoning about future behavior, the revision of intended activities, or learning. In this thesis, plan-based control is applied to the self-supervised improvement of mobile robot plan execution

    Centralized learning and planning : for cognitive robots operating in human domains

    Get PDF
    • …
    corecore