3,296 research outputs found

    Towards Distributed and Adaptive Detection and Localisation of Network Faults

    Get PDF
    We present a statistical probing-approach to distributed fault-detection in networked systems, based on autonomous configuration of algorithm parameters. Statistical modelling is used for detection and localisation of network faults. A detected fault is isolated to a node or link by collaborative fault-localisation. From local measurements obtained through probing between nodes, probe response delay and packet drop are modelled via parameter estimation for each link. Estimated model parameters are used for autonomous configuration of algorithm parameters, related to probe intervals and detection mechanisms. Expected fault-detection performance is formulated as a cost instead of specific parameter values, significantly reducing configuration efforts in a distributed system. The benefit offered by using our algorithm is fault-detection with increased certainty based on local measurements, compared to other methods not taking observed network conditions into account. We investigate the algorithm performance for varying user parameters and failure conditions. The simulation results indicate that more than 95 % of the generated faults can be detected with few false alarms. At least 80 % of the link faults and 65 % of the node faults are correctly localised. The performance can be improved by parameter adjustments and by using alternative paths for communication of algorithm control messages

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Timed Fault Tree Models of the China Yongwen Railway Accident

    Get PDF
    Safety is an essential requirement for railway transportation. There are many methods that have been developed to predict, prevent and mitigate accidents in this context. All of these methods have their own purpose and limitations. This paper presents a new useful analysis technique: timed fault tree analysis. This method extends traditional fault tree analysis with temporal events and fault characteristics. Timed Fault Trees (TFTs) can determine which faults need to be eliminated urgently, and it can also provide a safe time window to repair them. They can also be used to determine the time taken for railway maintenance requirements, and thereby improve maintenance efficiency, and reduce risks. In this paper, we present the features and functionality of a railway transportation system based on timed fault tree models. We demonstrate the applicability of our framework via a case study of the China Yongwen line railway accident

    Améliorations de méthodes de localisation de défauts pour les réseaux de distribution électrique

    Get PDF
    This thesis proposes to improve fault localization methods for electricalpower distribution networks. Transmission networks were quickly equipped with protectionand fault localization equipments. Indeed, faults on the transmission network need tobe dealt with quickly in order to avoid serious consequences. Unlike transmission networks,distribution networks have a minimal protection scheme. The smart grid developmentsbring new possibilities with the installation of new equipments giving access to many newvariables. The work presented in this thesis develop two fault localization method. Thefirst aims in using the equipment already installed (fault indicators) in order to isolatequickly and efficiently the zone concerned by the fault. The second method performs aprecise localization (in distance) of the different possible fault locations from the electricalmeasurements made on the network.Ces travaux proposent des améliorations de méthodes de localisation desdéfauts électriques sur les réseaux électriques de distribution. Les réseaux de transportont rapidement été instrumenté en élément de protection. En effet, un incident survenantsur le réseau de transport peut entrainer de graves conséquences s’il n’est pas traité rapidement.Les réseaux de distribution quand à eux possèdent un schéma de protectionminimal. Cependant le développement des smart grids (ou réseaux intelligents) amène denouvelles possibilités avec l’ajout d’équipements de mesures sur le réseau de distribution.Les travaux présentés dans cette thèse développent deux méthodes de localisation de défaut.La première permet de mieux utiliser l’équipement déjà en place (indicateurs depassage de défaut) afin d’isoler de manière rapide et fiable la zone concernée par le défaut.La deuxième permet une localisation précise (en distance) des différents lieux de défautspossibles à partir de mesures électriques

    Locating bugs without looking back

    Get PDF
    Bug localisation is a core program comprehension task in software maintenance: given the observation of a bug, e.g. via a bug report, where is it located in the source code? Information retrieval (IR) approaches see the bug report as the query, and the source code files as the documents to be retrieved, ranked by relevance. Such approaches have the advantage of not requiring expensive static or dynamic analysis of the code. However, current state-of-the-art IR approaches rely on project history, in particular previously fixed bugs or previous versions of the source code. We present a novel approach that directly scores each current file against the given report, thus not requiring past code and reports. The scoring method is based on heuristics identified through manual inspection of a small sample of bug reports. We compare our approach to eight others, using their own five metrics on their own six open source projects. Out of 30 performance indicators, we improve 27 and equal 2. Over the projects analysed, on average we find one or more affected files in the top 10 ranked files for 76% of the bug reports. These results show the applicability of our approach to software projects without history

    Classification of partial discharge EMI conditions using permutation entropy-based features

    Get PDF
    In this paper we investigate the application of feature extraction and machine learning techniques to fault identification in power systems. Specifically we implement the novel application of Permutation Entropy-based measures known as Weighted Permutation and Dispersion Entropy to field Electro- Magnetic Interference (EMI) signals for classification of discharge sources, also called conditions, such as partial discharge, arcing and corona which arise from various assets of different power sites. This work introduces two main contributions: the application of entropy measures in condition monitoring and the classification of real field EMI captured signals. The two simple and low dimension features are fed to a Multi-Class Support Vector Machine for the classification of different discharge sources contained in the EMI signals. Classification was performed to distinguish between the conditions observed within each site and between all sites. Results demonstrate that the proposed approach separated and identified the discharge sources successfully
    • …
    corecore