4,038 research outputs found

    Space-Time Hierarchical-Graph Based Cooperative Localization in Wireless Sensor Networks

    Full text link
    It has been shown that cooperative localization is capable of improving both the positioning accuracy and coverage in scenarios where the global positioning system (GPS) has a poor performance. However, due to its potentially excessive computational complexity, at the time of writing the application of cooperative localization remains limited in practice. In this paper, we address the efficient cooperative positioning problem in wireless sensor networks. A space-time hierarchical-graph based scheme exhibiting fast convergence is proposed for localizing the agent nodes. In contrast to conventional methods, agent nodes are divided into different layers with the aid of the space-time hierarchical-model and their positions are estimated gradually. In particular, an information propagation rule is conceived upon considering the quality of positional information. According to the rule, the information always propagates from the upper layers to a certain lower layer and the message passing process is further optimized at each layer. Hence, the potential error propagation can be mitigated. Additionally, both position estimation and position broadcasting are carried out by the sensor nodes. Furthermore, a sensor activation mechanism is conceived, which is capable of significantly reducing both the energy consumption and the network traffic overhead incurred by the localization process. The analytical and numerical results provided demonstrate the superiority of our space-time hierarchical-graph based cooperative localization scheme over the benchmarking schemes considered.Comment: 14 pages, 15 figures, 4 tables, accepted to appear on IEEE Transactions on Signal Processing, Sept. 201

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Simultaneous Distributed Sensor Self-Localization and Target Tracking Using Belief Propagation and Likelihood Consensus

    Full text link
    We introduce the framework of cooperative simultaneous localization and tracking (CoSLAT), which provides a consistent combination of cooperative self-localization (CSL) and distributed target tracking (DTT) in sensor networks without a fusion center. CoSLAT extends simultaneous localization and tracking (SLAT) in that it uses also intersensor measurements. Starting from a factor graph formulation of the CoSLAT problem, we develop a particle-based, distributed message passing algorithm for CoSLAT that combines nonparametric belief propagation with the likelihood consensus scheme. The proposed CoSLAT algorithm improves on state-of-the-art CSL and DTT algorithms by exchanging probabilistic information between CSL and DTT. Simulation results demonstrate substantial improvements in both self-localization and tracking performance.Comment: 10 pages, 5 figure

    Opportunistic Localization Scheme Based on Linear Matrix Inequality

    Get PDF
    Enabling self-localization of mobile nodes is an important problem that has been widely studied in the literature. The general conclusions is that an accurate localization requires either sophisticated hardware (GPS, UWB, ultrasounds transceiver) or a dedicated infrastructure (GSM, WLAN). In this paper we tackle the problem from a different and rather new perspective: we investigate how localization performance can be improved by means of a cooperative and opportunistic data exchange among the nodes. We consider a target node, completely unaware of its own position, and a number of mobile nodes with some self-localization capabilities. When the opportunity occurs, the target node can exchange data with in-range mobile nodes. This opportunistic data exchange is then used by the target node to refine its position estimate by using a technique based on Linear Matrix Inequalities and barycentric algorithm. To investigate the performance of such an opportunistic localization algorithm, we define a simple mathematical model that describes the opportunistic interactions and, then, we run several computer simulations for analyzing the effect of the nodes duty-cycle and of the native self-localization error modeling considered. The results show that the opportunistic interactions can actually improve the self-localization accuracy of a strayed node in many different scenarios

    Cooperative Relative Positioning of Mobile Users by Fusing IMU Inertial and UWB Ranging Information

    Full text link
    Relative positioning between multiple mobile users is essential for many applications, such as search and rescue in disaster areas or human social interaction. Inertial-measurement unit (IMU) is promising to determine the change of position over short periods of time, but it is very sensitive to error accumulation over long term run. By equipping the mobile users with ranging unit, e.g. ultra-wideband (UWB), it is possible to achieve accurate relative positioning by trilateration-based approaches. As compared to vision or laser-based sensors, the UWB does not need to be with in line-of-sight and provides accurate distance estimation. However, UWB does not provide any bearing information and the communication range is limited, thus UWB alone cannot determine the user location without any ambiguity. In this paper, we propose an approach to combine IMU inertial and UWB ranging measurement for relative positioning between multiple mobile users without the knowledge of the infrastructure. We incorporate the UWB and the IMU measurement into a probabilistic-based framework, which allows to cooperatively position a group of mobile users and recover from positioning failures. We have conducted extensive experiments to demonstrate the benefits of incorporating IMU inertial and UWB ranging measurements.Comment: accepted by ICRA 201

    Distributed Estimation with Information-Seeking Control in Agent Network

    Get PDF
    We introduce a distributed, cooperative framework and method for Bayesian estimation and control in decentralized agent networks. Our framework combines joint estimation of time-varying global and local states with information-seeking control optimizing the behavior of the agents. It is suited to nonlinear and non-Gaussian problems and, in particular, to location-aware networks. For cooperative estimation, a combination of belief propagation message passing and consensus is used. For cooperative control, the negative posterior joint entropy of all states is maximized via a gradient ascent. The estimation layer provides the control layer with probabilistic information in the form of sample representations of probability distributions. Simulation results demonstrate intelligent behavior of the agents and excellent estimation performance for a simultaneous self-localization and target tracking problem. In a cooperative localization scenario with only one anchor, mobile agents can localize themselves after a short time with an accuracy that is higher than the accuracy of the performed distance measurements.Comment: 17 pages, 10 figure

    Design and realization of precise indoor localization mechanism for Wi-Fi devices

    Get PDF
    Despite the abundant literature in the field, there is still the need to find a time-efficient, highly accurate, easy to deploy and robust localization algorithm for real use. The algorithm only involves minimal human intervention. We propose an enhanced Received Signal Strength Indicator (RSSI) based positioning algorithm for Wi-Fi capable devices, called the Dynamic Weighted Evolution for Location Tracking (DWELT). Due to the multiple phenomena affecting the propagation of radio signals, RSSI measurements show fluctuations that hinder the utilization of straightforward positioning mechanisms from widely known propagation loss models. Instead, DWELT uses data processing of raw RSSI values and applies a weighted posterior-probabilistic evolution for quick convergence of localization and tracking. In this paper, we present the first implementation of DWELT, intended for 1D location (applicable to tunnels or corridors), and the first step towards a more generic implementation. Simulations and experiments show an accuracy of 1m in more than 81% of the cases, and less than 2m in the 95%.Peer ReviewedPostprint (published version
    corecore